

    
      
          
            
  
libNeuroML: documentation

Welcome to the libNeuroML documentation.
Here you will find information on installing, using, and contributing to libNeuroML.
For more information on NeuroML standard, other tools in the NeuroML eco-system, the NeuroML community and how to get in touch with us, please see the documentation at https://docs.neuroml.org.



	User guide
	Introduction

	Installation

	API documentation

	Examples

	References





	Contributing
	How to contribute

	Regenerating documentation

	Implementation of XML bindings for libNeuroML

	Multicompartmental Python API Meeting

	Nodes, Segments and Sections










Indices and tables


	Index


	Module Index


	Search Page








            

          

      

      

    

  

    
      
          
            
  
User guide



	Introduction
	NeuroML

	Serialisations





	Installation
	Using Pip

	On Fedora based systems

	Install from source

	Run an example

	Unit tests





	API documentation
	nml Module (NeuroML Core classes)

	loaders Module

	writers Module

	utils Module

	arraymorph Module





	Examples
	Creating a NeuroML morphology

	Loading and modifying a file

	Building a network

	Building a 3D network

	Ion channels

	PyNN models

	Synapses

	Working with JSON serialization

	Working with arraymorphs

	Working with Izhikevich Cells





	References








            

          

      

      

    

  

    
      
          
            
  
Introduction

This package provides Python libNeuroML, for working with neuronal models specified in NeuroML 2 [http://docs.neuroml.org].


Warning

libNeuroML targets NeuroML v2.0

libNeuroML targets NeuroML v2.0 [http://docs.neuroml.org], which is described in Cannon et al, 2014 [http://journal.frontiersin.org/Journal/10.3389/fninf.2014.00079/abstract]).
NeuroML v1.8.1 (Gleeson et al. 2010 [http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000815]) is now deprecated and not supported by libNeuroML.



For a detailed description of libNeuroML see Vella et al. [VCC+14].
Please cite the paper if you use libNeuroML.


NeuroML

NeuroML provides an object model for describing neuronal morphologies, ion channels, synapses and 3D network structure.
For more information on NeuroML 2 and LEMS please see the NeuroML documentation [https://docs.neuroml.org/Userdocs/NeuroMLv2.html].



Serialisations

The XML serialisation will be the “natural” serialisation and will follow closely the NeuroML object model.
The format of the XML will be specified by the XML Schema definition (XSD file).

Other serialisations have been developed (HDF5, JSON, SWC).
Please see Vella et al. [VCC+14] for more details.





            

          

      

      

    

  

    
      
          
            
  
Installation


Using Pip

On most systems with a Python installation, libNeuroML can be installed using the default Python package manager, Pip:

pip install libNeuroML





It is recommended to use a virtual environment [https://docs.python.org/3/tutorial/venv.html] when installing Python packages using pip to prevent these from conflicting with other system libraries.

This will support the default XML serialization.
To install all of requirements to include the other serialisations, use

# On Ubuntu based systems
sudo apt-get install libhdf5-dev
pip install libNeuroML[full]





The apt line is required at time of writing because PyTables’ wheels for python 3.7 depend on the system libhdf5.



On Fedora based systems

On Fedora [https://getfedora.org] Linux systems, the NeuroFedora [https://neuro.fedoraproject.org] community provides libNeuroML in the standard Fedora repos [https://src.fedoraproject.org/rpms/python-libNeuroML] and can be installed using the following commands:

sudo dnf install python3-libNeuroML







Install from source

You can clone the GitHub repository [https://github.com/NeuralEnsemble/libNeuroML/] and also build libNeuroML from the sources.
For this, you will need git [https://git-scm.com]:

git clone git://github.com/NeuralEnsemble/libNeuroML.git
cd libNeuroML





More details about the git repository and making your own branch/fork are here.
To build and install libNeuroML, you can use the standard install method for Python packages (preferably in a virtual environment):

python setup.py install





To use the latest development version of libNeuroML, switch to the development branch:

git checkout development
sudo python setup.py install







Run an example

Some sample scripts are included in neuroml/examples, e.g. :

cd neuroml/examples
python build_network.py





The standard examples can also be found Examples.



Unit tests

To run unit tests cd to the directory neuroml/test and use the Python unittest module discover method:

cd neuroml/test/
python -m unittest discover





If all tests passed correctly, your output should look something like this:

.......
----------------------------------------------------------------------
Ran 55 tests in 40.1s

OK





You can also use PyTest to run tests.

pip install pytest
pytest -v --strict -W all





To ignore some tests, like the MongoDB test which requires a MongoDB setup, run:

pytest -v -k "not mongodb" --strict -W all









            

          

      

      

    

  

    
      
          
            
  
API documentation

The libNeuroML API includes the core NeuroML classes and various utilities.
You can find information on these in the pages below.



	nml Module (NeuroML Core classes)
	List of Component classes





	loaders Module

	writers Module

	utils Module

	arraymorph Module








            

          

      

      

    

  

    
      
          
            
  
nml Module (NeuroML Core classes)

These NeuroML core classes are Python representations of the Component Types defined in the NeuroML standard [https://docs.neuroml.org/Userdocs/NeuroMLv2.html] .
These can be used to build NeuroML models in Python, and these models can then be exported to the standard XML NeuroML representation.
These core classes also contain some utility functions to make it easier for users to carry out common tasks.

Each NeuroML Component Type is represented here as a Python class.
Due to implementation limitations, whereas NeuroML Component Types use lower camel case naming [https://en.wikipedia.org/wiki/Camel_case], the Python classes here use upper camel case naming [https://en.wikipedia.org/wiki/Camel_case].
So, for example, the adExIaFCell Component Type in the NeuroML schema becomes the AdExIaFCell class here, and expTwoSynapse becomes the ExpTwoSynapse class.

The child and children elements that NeuroML Component Types can have are represented in the Python classes as variables.
The variable names, to distinguish them from class names, use snake case [https://en.wikipedia.org/wiki/Snake_case].
So for example, the cell NeuroML Component Type has a corresponding Cell Python class here.
The biophysicalProperties child Component Type in cell is represented as the biophysical_properties list variable in the Cell Python class.
The class signatures list all the child/children elements and text fields that the corresponding Component Type possesses.
To again use the Cell class as an example, the construction signature is this:

class neuroml.nml.nml.Cell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, morphology_attr=None, biophysical_properties_attr=None, morphology=None, biophysical_properties=None, extensiontype_=None, **kwargs_)





As can be seen here, it includes both the biophysical_properties and morphology child elements as variables.

Please see the examples in the NeuroML documentation [https://docs.neuroml.org/Userdocs/GettingStarted.html] to see usage examples of libNeuroML.
Please also note that this module is also included in the top level of the neuroml package, so you can use these classes by importing neuroml:

from neuroml import AdExIaFCell






List of Component classes


AdExIaFCell


	
class neuroml.nml.nml.AdExIaFCell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, C=None, g_l=None, EL=None, reset=None, VT=None, thresh=None, del_t=None, tauw=None, refract=None, a=None, b=None, **kwargs_)

	





AlphaCondSynapse


	
class neuroml.nml.nml.AlphaCondSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, tau_syn=None, e_rev=None, **kwargs_)

	





AlphaCurrSynapse


	
class neuroml.nml.nml.AlphaCurrSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, tau_syn=None, **kwargs_)

	





AlphaCurrentSynapse


	
class neuroml.nml.nml.AlphaCurrentSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, tau=None, ibase=None, **kwargs_)

	





AlphaSynapse


	
class neuroml.nml.nml.AlphaSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, gbase=None, erev=None, tau=None, **kwargs_)

	





Annotation


	
class neuroml.nml.nml.Annotation(anytypeobjs_=None, **kwargs_)

	Placeholder for MIRIAM related metadata, among others.







Base


	
class neuroml.nml.nml.Base(neuro_lex_id=None, id=None, extensiontype_=None, **kwargs_)

	Anything which can have a unique (within its parent) id of the form
NmlId (spaceless combination of letters, numbers and
underscore).







BaseCell


	
class neuroml.nml.nml.BaseCell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, extensiontype_=None, **kwargs_)

	





BaseCellMembPotCap


	
class neuroml.nml.nml.BaseCellMembPotCap(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, C=None, extensiontype_=None, **kwargs_)

	This is to prevent it conflicting with attribute c (lowercase) e.g.
in izhikevichCell2007







BaseConductanceBasedSynapse


	
class neuroml.nml.nml.BaseConductanceBasedSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, gbase=None, erev=None, extensiontype_=None, **kwargs_)

	





BaseConductanceBasedSynapseTwo


	
class neuroml.nml.nml.BaseConductanceBasedSynapseTwo(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, gbase1=None, gbase2=None, erev=None, extensiontype_=None, **kwargs_)

	





BaseConnection


	
class neuroml.nml.nml.BaseConnection(neuro_lex_id=None, id=None, extensiontype_=None, **kwargs_)

	Base of all synaptic connections (chemical/electrical/analog, etc.)
inside projections







BaseConnectionNewFormat


	
class neuroml.nml.nml.BaseConnectionNewFormat(neuro_lex_id=None, id=None, pre_cell=None, pre_segment='0', pre_fraction_along='0.5', post_cell=None, post_segment='0', post_fraction_along='0.5', extensiontype_=None, **kwargs_)

	Base of all synaptic connections with preCell, postSegment, etc. See
BaseConnectionOldFormat







BaseConnectionOldFormat


	
class neuroml.nml.nml.BaseConnectionOldFormat(neuro_lex_id=None, id=None, pre_cell_id=None, pre_segment_id='0', pre_fraction_along='0.5', post_cell_id=None, post_segment_id='0', post_fraction_along='0.5', extensiontype_=None, **kwargs_)

	Base of all synaptic connections with preCellId, postSegmentId, etc.
Note: this is not the best name for these attributes, since Id
is superfluous, hence BaseConnectionNewFormat







BaseCurrentBasedSynapse


	
class neuroml.nml.nml.BaseCurrentBasedSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, extensiontype_=None, **kwargs_)

	





BaseNonNegativeIntegerId


	
class neuroml.nml.nml.BaseNonNegativeIntegerId(neuro_lex_id=None, id=None, extensiontype_=None, **kwargs_)

	Anything which can have a unique (within its parent) id, which must
be an integer zero or greater.







BaseProjection


	
class neuroml.nml.nml.BaseProjection(neuro_lex_id=None, id=None, presynaptic_population=None, postsynaptic_population=None, extensiontype_=None, **kwargs_)

	Base for projection (set of synaptic connections) between two
populations







BasePynnSynapse


	
class neuroml.nml.nml.BasePynnSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, tau_syn=None, extensiontype_=None, **kwargs_)

	





BaseSynapse


	
class neuroml.nml.nml.BaseSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, extensiontype_=None, **kwargs_)

	





BaseVoltageDepSynapse


	
class neuroml.nml.nml.BaseVoltageDepSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, extensiontype_=None, **kwargs_)

	





BaseWithoutId


	
class neuroml.nml.nml.BaseWithoutId(neuro_lex_id=None, extensiontype_=None, **kwargs_)

	Base element without ID specified yet, e.g. for an element with a
particular requirement on its id which does not comply with
NmlId (e.g. Segment needs nonNegativeInteger).







BiophysicalProperties


	
class neuroml.nml.nml.BiophysicalProperties(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, membrane_properties=None, intracellular_properties=None, extracellular_properties=None, **kwargs_)

	Standalone element which is usually inside a single cell, but could
be outside and referenced by id.







BiophysicalProperties2CaPools


	
class neuroml.nml.nml.BiophysicalProperties2CaPools(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, membrane_properties2_ca_pools=None, intracellular_properties2_ca_pools=None, extracellular_properties=None, **kwargs_)

	Standalone element which is usually inside a single cell, but could
be outside and referenced by id.







BlockMechanism


	
class neuroml.nml.nml.BlockMechanism(type=None, species=None, block_concentration=None, scaling_conc=None, scaling_volt=None, **kwargs_)

	





BlockingPlasticSynapse


	
class neuroml.nml.nml.BlockingPlasticSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, gbase=None, erev=None, tau_decay=None, tau_rise=None, plasticity_mechanism=None, block_mechanism=None, **kwargs_)

	





Case


	
class neuroml.nml.nml.Case(condition=None, value=None, **kwargs_)

	





Cell


	
class neuroml.nml.nml.Cell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, morphology_attr=None, biophysical_properties_attr=None, morphology=None, biophysical_properties=None, extensiontype_=None, **kwargs_)

	Should only be used if morphology element is outside the cell. This
points to the id of the morphology Should only be used if
biophysicalProperties element is outside the cell. This points
to the id of the biophysicalProperties


	
get_actual_proximal(segment_id)

	Get the proximal point of a segment.

Get the proximal point of a segment, even the proximal field is None
and so the proximal point is on the parent (at a point set by
fraction_along).


	Parameters

	segment_id – ID of segment



	Returns

	proximal point










	
get_all_segments_in_group(segment_group, assume_all_means_all=True)

	Get all the segments in a segment group of the cell.


	Parameters

	
	segment_group – segment group to get all segments of


	assume_all_means_all – return all segments if the segment group
wasn’t explicitly defined






	Todo

	check docstring



	Returns

	list of segments



	Raises

	Exception – if no segment group is found in the cell.










	
get_ordered_segments_in_groups(group_list, check_parentage=False, include_cumulative_lengths=False, include_path_lengths=False, path_length_metric='Path Length from root')

	Get ordered list of segments in specified groups


	Parameters

	
	group_list – list of groups to get segments from


	check_parentage – verify parentage


	include_commulative_lengths – also include cummulative lengths


	include_path_lengths – also include path lengths


	path_length_metric – 






	Returns

	dictionary of segments with additional information depending
on what parameters were used:



	Raises

	Exception if check_parentage is True and parentage cannot be verified










	
get_segment(segment_id)

	Get segment object by its id


	Parameters

	segment_id – ID of segment



	Returns

	segment



	Raises

	Exception – if the segment is not found in the cell










	
get_segment_group(sg_id)

	Return the SegmentGroup object for the specified segment group id.


	Parameters

	sg_id (str) – id of segment group to find



	Returns

	SegmentGroup object of specified ID



	Raises

	Exception – if segment group is not found in cell










	
get_segment_groups_by_substring(substring)

	Get a dictionary of segment group IDs and the segment groups matching the specified substring


	Parameters

	substring (str) – substring to match



	Returns

	dictionary with segment group ID as key, and segment group as value



	Raises

	Exception – if no segment groups are not found in cell










	
get_segment_ids_vs_segments()

	Get a dictionary of segment IDs and the segments in the cell.


	Returns

	dictionary with segment ID as key, and segment as value










	
get_segment_length(segment_id)

	Get the length of the segment.


	Parameters

	segment_id – ID of segment



	Returns

	length of segment










	
get_segment_surface_area(segment_id)

	Get the surface area of the segment.


	Parameters

	segment_id – ID of the segment



	Returns

	surface area of segment










	
get_segment_volume(segment_id)

	Get volume of segment


	Parameters

	segment_id – ID of the segment



	Returns

	volume of the segment










	
get_segments_by_substring(substring)

	Get a dictionary of segment IDs and the segment matching the specified substring


	Parameters

	substring (str) – substring to match



	Returns

	dictionary with segment ID as key, and segment as value



	Raises

	Exception – if no segments are found










	
summary()

	Print cell summary.











Cell2CaPools


	
class neuroml.nml.nml.Cell2CaPools(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, morphology_attr=None, biophysical_properties_attr=None, morphology=None, biophysical_properties=None, biophysical_properties2_ca_pools=None, **kwargs_)

	





CellSet


	
class neuroml.nml.nml.CellSet(neuro_lex_id=None, id=None, select=None, anytypeobjs_=None, **kwargs_)

	





ChannelDensity


	
class neuroml.nml.nml.ChannelDensity(neuro_lex_id=None, id=None, ion_channel=None, cond_density=None, erev=None, segment_groups='all', segments=None, ion=None, variable_parameters=None, extensiontype_=None, **kwargs_)

	Specifying the ion here again is redundant, this will be set in
ionChannel definition. It is added here TEMPORARILY since
selecting all ca or na conducting channel populations/densities
in a cell would be difficult otherwise. Also, it will make it
easier to set the correct native simulator value for erev (e.g.
ek for ion = k in NEURON). Currently a required attribute. It
should be removed in the longer term, due to possible
inconsistencies in this value and that in the ionChannel
element. TODO: remove.







ChannelDensityGHK


	
class neuroml.nml.nml.ChannelDensityGHK(neuro_lex_id=None, id=None, ion_channel=None, permeability=None, segment_groups='all', segments=None, ion=None, **kwargs_)

	Specifying the ion here again is redundant, this will be set in
ionChannel definition. It is added here TEMPORARILY since
selecting all ca or na conducting channel populations/densities
in a cell would be difficult otherwise. Also, it will make it
easier to set the correct native simulator value for erev (e.g.
ek for ion = k in NEURON). Currently a required attribute. It
should be removed in the longer term, due to possible
inconsistencies in this value and that in the ionChannel
element. TODO: remove.







ChannelDensityGHK2


	
class neuroml.nml.nml.ChannelDensityGHK2(neuro_lex_id=None, id=None, ion_channel=None, cond_density=None, segment_groups='all', segments=None, ion=None, **kwargs_)

	Specifying the ion here again is redundant, this will be set in
ionChannel definition. It is added here TEMPORARILY since
selecting all ca or na conducting channel populations/densities
in a cell would be difficult otherwise. Also, it will make it
easier to set the correct native simulator value for erev (e.g.
ek for ion = k in NEURON). Currently a required attribute. It
should be removed in the longer term, due to possible
inconsistencies in this value and that in the ionChannel
element. TODO: remove.







ChannelDensityNernst


	
class neuroml.nml.nml.ChannelDensityNernst(neuro_lex_id=None, id=None, ion_channel=None, cond_density=None, segment_groups='all', segments=None, ion=None, variable_parameters=None, extensiontype_=None, **kwargs_)

	Specifying the ion here again is redundant, this will be set in
ionChannel definition. It is added here TEMPORARILY since
selecting all ca or na conducting channel populations/densities
in a cell would be difficult otherwise. Also, it will make it
easier to set the correct native simulator value for erev (e.g.
ek for ion = k in NEURON). Currently a required attribute. It
should be removed in the longer term, due to possible
inconsistencies in this value and that in the ionChannel
element. TODO: remove.







ChannelDensityNernstCa2


	
class neuroml.nml.nml.ChannelDensityNernstCa2(neuro_lex_id=None, id=None, ion_channel=None, cond_density=None, segment_groups='all', segments=None, ion=None, variable_parameters=None, **kwargs_)

	





ChannelDensityNonUniform


	
class neuroml.nml.nml.ChannelDensityNonUniform(neuro_lex_id=None, id=None, ion_channel=None, erev=None, ion=None, variable_parameters=None, **kwargs_)

	Specifying the ion here again is redundant, this will be set in
ionChannel definition. It is added here TEMPORARILY since
selecting all ca or na conducting channel populations/densities
in a cell would be difficult otherwise. Also, it will make it
easier to set the correct native simulator value for erev (e.g.
ek for ion = k in NEURON). Currently a required attribute. It
should be removed in the longer term, due to possible
inconsistencies in this value and that in the ionChannel
element. TODO: remove.







ChannelDensityNonUniformGHK


	
class neuroml.nml.nml.ChannelDensityNonUniformGHK(neuro_lex_id=None, id=None, ion_channel=None, ion=None, variable_parameters=None, **kwargs_)

	Specifying the ion here again is redundant, this will be set in
ionChannel definition. It is added here TEMPORARILY since
selecting all ca or na conducting channel populations/densities
in a cell would be difficult otherwise. Also, it will make it
easier to set the correct native simulator value for erev (e.g.
ek for ion = k in NEURON). Currently a required attribute. It
should be removed in the longer term, due to possible
inconsistencies in this value and that in the ionChannel
element. TODO: remove.







ChannelDensityNonUniformNernst


	
class neuroml.nml.nml.ChannelDensityNonUniformNernst(neuro_lex_id=None, id=None, ion_channel=None, ion=None, variable_parameters=None, **kwargs_)

	Specifying the ion here again is redundant, this will be set in
ionChannel definition. It is added here TEMPORARILY since
selecting all ca or na conducting channel populations/densities
in a cell would be difficult otherwise. Also, it will make it
easier to set the correct native simulator value for erev (e.g.
ek for ion = k in NEURON). Currently a required attribute. It
should be removed in the longer term, due to possible
inconsistencies in this value and that in the ionChannel
element. TODO: remove.







ChannelDensityVShift


	
class neuroml.nml.nml.ChannelDensityVShift(neuro_lex_id=None, id=None, ion_channel=None, cond_density=None, erev=None, segment_groups='all', segments=None, ion=None, variable_parameters=None, v_shift=None, **kwargs_)

	





ChannelPopulation


	
class neuroml.nml.nml.ChannelPopulation(neuro_lex_id=None, id=None, ion_channel=None, number=None, erev=None, segment_groups='all', segments=None, ion=None, variable_parameters=None, **kwargs_)

	Specifying the ion here again is redundant, this will be set in
ionChannel definition. It is added here TEMPORARILY since
selecting all ca or na conducting channel populations/densities
in a cell would be difficult otherwise. Also, it will make it
easier to set the correct native simulator value for erev (e.g.
ek for ion = k in NEURON). Currently a required attribute. It
should be removed in the longer term, due to possible
inconsistencies in this value and that in the ionChannel
element. TODO: remove.







ClosedState


	
class neuroml.nml.nml.ClosedState(neuro_lex_id=None, id=None, **kwargs_)

	





ComponentType


	
class neuroml.nml.nml.ComponentType(name=None, extends=None, description=None, Property=None, Parameter=None, Constant=None, Exposure=None, Requirement=None, InstanceRequirement=None, Dynamics=None, **kwargs_)

	Contains an extension to NeuroML by creating custom LEMS
ComponentType.







CompoundInput


	
class neuroml.nml.nml.CompoundInput(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, pulse_generators=None, sine_generators=None, ramp_generators=None, **kwargs_)

	





CompoundInputDL


	
class neuroml.nml.nml.CompoundInputDL(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, pulse_generator_dls=None, sine_generator_dls=None, ramp_generator_dls=None, **kwargs_)

	





ConcentrationModel_D


	
class neuroml.nml.nml.ConcentrationModel_D(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, ion=None, resting_conc=None, decay_constant=None, shell_thickness=None, type='decayingPoolConcentrationModel', **kwargs_)

	





ConditionalDerivedVariable


	
class neuroml.nml.nml.ConditionalDerivedVariable(name=None, dimension=None, description=None, exposure=None, Case=None, **kwargs_)

	LEMS ComponentType for ConditionalDerivedVariable







Connection


	
class neuroml.nml.nml.Connection(neuro_lex_id=None, id=None, pre_cell_id=None, pre_segment_id='0', pre_fraction_along='0.5', post_cell_id=None, post_segment_id='0', post_fraction_along='0.5', **kwargs_)

	Individual chemical (event based) synaptic connection, weight==1 and
no delay


	
get_post_cell_id()

	Get the ID of the post-synaptic cell


	Returns

	ID of post-synaptic cell



	Return type

	str










	
get_post_fraction_along()

	Get post-synaptic fraction along information






	
get_post_info()

	Get post-synaptic information summary






	
get_post_segment_id()

	Get the ID of the post-synpatic segment


	Returns

	ID of post-synaptic segment.



	Return type

	str










	
get_pre_cell_id()

	Get the ID of the pre-synaptic cell


	Returns

	ID of pre-synaptic cell



	Return type

	str










	
get_pre_fraction_along()

	Get pre-synaptic fraction along information






	
get_pre_info()

	Get pre-synaptic information summary






	
get_pre_segment_id()

	Get the ID of the pre-synpatic segment


	Returns

	ID of pre-synaptic segment.



	Return type

	str















ConnectionWD


	
class neuroml.nml.nml.ConnectionWD(neuro_lex_id=None, id=None, pre_cell_id=None, pre_segment_id='0', pre_fraction_along='0.5', post_cell_id=None, post_segment_id='0', post_fraction_along='0.5', weight=None, delay=None, **kwargs_)

	Individual synaptic connection with weight and delay


	
get_delay_in_ms()

	Get connection delay in milli seconds


	Returns

	connection delay in milli seconds



	Return type

	float










	
get_post_cell_id()

	Get the ID of the post-synaptic cell


	Returns

	ID of post-synaptic cell



	Return type

	str










	
get_post_fraction_along()

	Get post-synaptic fraction along information






	
get_post_info()

	Get post-synaptic information summary






	
get_post_segment_id()

	Get the ID of the post-synpatic segment


	Returns

	ID of post-synaptic segment.



	Return type

	str










	
get_pre_cell_id()

	Get the ID of the pre-synaptic cell


	Returns

	ID of pre-synaptic cell



	Return type

	str










	
get_pre_fraction_along()

	Get pre-synaptic fraction along information






	
get_pre_info()

	Get pre-synaptic information summary






	
get_pre_segment_id()

	Get the ID of the pre-synpatic segment


	Returns

	ID of pre-synaptic segment.



	Return type

	str















Constant


	
class neuroml.nml.nml.Constant(name=None, dimension=None, value=None, description=None, **kwargs_)

	LEMS ComponentType for Constant.







ContinuousConnection


	
class neuroml.nml.nml.ContinuousConnection(neuro_lex_id=None, id=None, pre_cell=None, pre_segment='0', pre_fraction_along='0.5', post_cell=None, post_segment='0', post_fraction_along='0.5', pre_component=None, post_component=None, extensiontype_=None, **kwargs_)

	Individual continuous/analog synaptic connection


	
get_post_cell_id()

	Get the ID of the post-synaptic cell


	Returns

	ID of post-synaptic cell



	Return type

	str










	
get_post_fraction_along()

	Get post-synaptic fraction along information






	
get_post_info()

	Get post-synaptic information summary






	
get_post_segment_id()

	Get the ID of the post-synpatic segment


	Returns

	ID of post-synaptic segment.



	Return type

	str










	
get_pre_cell_id()

	Get the ID of the pre-synaptic cell


	Returns

	ID of pre-synaptic cell



	Return type

	str










	
get_pre_fraction_along()

	Get pre-synaptic fraction along information






	
get_pre_info()

	Get pre-synaptic information summary






	
get_pre_segment_id()

	Get the ID of the pre-synpatic segment


	Returns

	ID of pre-synaptic segment.



	Return type

	str















ContinuousConnectionInstance


	
class neuroml.nml.nml.ContinuousConnectionInstance(neuro_lex_id=None, id=None, pre_cell=None, pre_segment='0', pre_fraction_along='0.5', post_cell=None, post_segment='0', post_fraction_along='0.5', pre_component=None, post_component=None, extensiontype_=None, **kwargs_)

	Individual continuous/analog synaptic connection - instance based







ContinuousConnectionInstanceW


	
class neuroml.nml.nml.ContinuousConnectionInstanceW(neuro_lex_id=None, id=None, pre_cell=None, pre_segment='0', pre_fraction_along='0.5', post_cell=None, post_segment='0', post_fraction_along='0.5', pre_component=None, post_component=None, weight=None, **kwargs_)

	Individual continuous/analog synaptic connection - instance based.
Includes setting of _weight for the connection


	
get_weight()

	Get weight.

If weight is not set, the default value of 1.0 is returned.











ContinuousProjection


	
class neuroml.nml.nml.ContinuousProjection(neuro_lex_id=None, id=None, presynaptic_population=None, postsynaptic_population=None, continuous_connections=None, continuous_connection_instances=None, continuous_connection_instance_ws=None, **kwargs_)

	Projection between two populations consisting of analog connections
(e.g. graded synapses)


	
exportHdf5(h5file, h5Group)

	Export to HDF5 file.











DecayingPoolConcentrationModel


	
class neuroml.nml.nml.DecayingPoolConcentrationModel(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, ion=None, resting_conc=None, decay_constant=None, shell_thickness=None, extensiontype_=None, **kwargs_)

	Should not be required, as it’s present on the species element!







DerivedVariable


	
class neuroml.nml.nml.DerivedVariable(name=None, dimension=None, description=None, exposure=None, value=None, select=None, **kwargs_)

	LEMS ComponentType for DerivedVariable







DistalDetails


	
class neuroml.nml.nml.DistalDetails(normalization_end=None, **kwargs_)

	





DoubleSynapse


	
class neuroml.nml.nml.DoubleSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, synapse1=None, synapse2=None, synapse1_path=None, synapse2_path=None, **kwargs_)

	





Dynamics


	
class neuroml.nml.nml.Dynamics(StateVariable=None, DerivedVariable=None, ConditionalDerivedVariable=None, TimeDerivative=None, **kwargs_)

	LEMS ComponentType for Dynamics







EIF_cond_alpha_isfa_ista


	
class neuroml.nml.nml.EIF_cond_alpha_isfa_ista(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, cm=None, i_offset=None, tau_syn_E=None, tau_syn_I=None, v_init=None, tau_m=None, tau_refrac=None, v_reset=None, v_rest=None, v_thresh=None, e_rev_E=None, e_rev_I=None, a=None, b=None, delta_T=None, tau_w=None, v_spike=None, **kwargs_)

	





EIF_cond_exp_isfa_ista


	
class neuroml.nml.nml.EIF_cond_exp_isfa_ista(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, cm=None, i_offset=None, tau_syn_E=None, tau_syn_I=None, v_init=None, tau_m=None, tau_refrac=None, v_reset=None, v_rest=None, v_thresh=None, e_rev_E=None, e_rev_I=None, a=None, b=None, delta_T=None, tau_w=None, v_spike=None, extensiontype_=None, **kwargs_)

	





ElectricalConnection


	
class neuroml.nml.nml.ElectricalConnection(neuro_lex_id=None, id=None, pre_cell=None, pre_segment='0', pre_fraction_along='0.5', post_cell=None, post_segment='0', post_fraction_along='0.5', synapse=None, extensiontype_=None, **kwargs_)

	Individual electrical synaptic connection


	
get_post_cell_id()

	Get the ID of the post-synaptic cell


	Returns

	ID of post-synaptic cell



	Return type

	str










	
get_post_fraction_along()

	Get post-synaptic fraction along information






	
get_post_info()

	Get post-synaptic information summary






	
get_post_segment_id()

	Get the ID of the post-synpatic segment


	Returns

	ID of post-synaptic segment.



	Return type

	str










	
get_pre_cell_id()

	Get the ID of the pre-synaptic cell


	Returns

	ID of pre-synaptic cell



	Return type

	str










	
get_pre_fraction_along()

	Get pre-synaptic fraction along information






	
get_pre_info()

	Get pre-synaptic information summary






	
get_pre_segment_id()

	Get the ID of the pre-synpatic segment


	Returns

	ID of pre-synaptic segment.



	Return type

	str















ElectricalConnectionInstance


	
class neuroml.nml.nml.ElectricalConnectionInstance(neuro_lex_id=None, id=None, pre_cell=None, pre_segment='0', pre_fraction_along='0.5', post_cell=None, post_segment='0', post_fraction_along='0.5', synapse=None, extensiontype_=None, **kwargs_)

	Projection between two populations consisting of analog connections
(e.g. graded synapses)







ElectricalConnectionInstanceW


	
class neuroml.nml.nml.ElectricalConnectionInstanceW(neuro_lex_id=None, id=None, pre_cell=None, pre_segment='0', pre_fraction_along='0.5', post_cell=None, post_segment='0', post_fraction_along='0.5', synapse=None, weight=None, **kwargs_)

	Projection between two populations consisting of analog connections
(e.g. graded synapses). Includes setting of weight for the
connection


	
get_weight()

	Get the weight of the connection

If a weight is not set (or is set to None), returns the default value
of 1.0.


	Returns

	weight of connection or 1.0 if not set



	Return type

	float















ElectricalProjection


	
class neuroml.nml.nml.ElectricalProjection(neuro_lex_id=None, id=None, presynaptic_population=None, postsynaptic_population=None, electrical_connections=None, electrical_connection_instances=None, electrical_connection_instance_ws=None, **kwargs_)

	Projection between two populations consisting of electrical
connections (gap junctions)


	
exportHdf5(h5file, h5Group)

	Export to HDF5 file.











ExpCondSynapse


	
class neuroml.nml.nml.ExpCondSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, tau_syn=None, e_rev=None, **kwargs_)

	





ExpCurrSynapse


	
class neuroml.nml.nml.ExpCurrSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, tau_syn=None, **kwargs_)

	





ExpOneSynapse


	
class neuroml.nml.nml.ExpOneSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, gbase=None, erev=None, tau_decay=None, **kwargs_)

	





ExpThreeSynapse


	
class neuroml.nml.nml.ExpThreeSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, gbase1=None, gbase2=None, erev=None, tau_decay1=None, tau_decay2=None, tau_rise=None, **kwargs_)

	





ExpTwoSynapse


	
class neuroml.nml.nml.ExpTwoSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, gbase=None, erev=None, tau_decay=None, tau_rise=None, extensiontype_=None, **kwargs_)

	





ExplicitInput


	
class neuroml.nml.nml.ExplicitInput(target=None, input=None, destination=None, **kwargs_)

	Single explicit input. Introduced to test inputs in LEMS. Will
probably be removed in favour of inputs wrapped in inputList
element


	
get_fraction_along()

	Get fraction along.

Returns 0.5 is fraction_along was not set.






	
get_segment_id()

	Get the ID of the segment.

Returns 0 if segment_id was not set.






	
get_target_cell_id()

	Get target cell ID






	
get_target_population()

	Get target population.











Exposure


	
class neuroml.nml.nml.Exposure(name=None, dimension=None, description=None, **kwargs_)

	LEMS Exposure (ComponentType property)







ExtracellularProperties


	
class neuroml.nml.nml.ExtracellularProperties(neuro_lex_id=None, id=None, species=None, **kwargs_)

	





ExtracellularPropertiesLocal


	
class neuroml.nml.nml.ExtracellularPropertiesLocal(species=None, **kwargs_)

	





FitzHughNagumo1969Cell


	
class neuroml.nml.nml.FitzHughNagumo1969Cell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, a=None, b=None, I=None, phi=None, V0=None, W0=None, **kwargs_)

	





FitzHughNagumoCell


	
class neuroml.nml.nml.FitzHughNagumoCell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, I=None, **kwargs_)

	





FixedFactorConcentrationModel


	
class neuroml.nml.nml.FixedFactorConcentrationModel(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, ion=None, resting_conc=None, decay_constant=None, rho=None, **kwargs_)

	Should not be required, as it’s present on the species element!







ForwardTransition


	
class neuroml.nml.nml.ForwardTransition(neuro_lex_id=None, id=None, from_=None, to=None, anytypeobjs_=None, **kwargs_)

	





GapJunction


	
class neuroml.nml.nml.GapJunction(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, conductance=None, **kwargs_)

	Gap junction/single electrical connection







GateFractional


	
class neuroml.nml.nml.GateFractional(neuro_lex_id=None, id=None, instances=None, notes=None, q10_settings=None, sub_gates=None, **kwargs_)

	





GateFractionalSubgate


	
class neuroml.nml.nml.GateFractionalSubgate(neuro_lex_id=None, id=None, fractional_conductance=None, notes=None, q10_settings=None, steady_state=None, time_course=None, **kwargs_)

	





GateHHInstantaneous


	
class neuroml.nml.nml.GateHHInstantaneous(neuro_lex_id=None, id=None, instances=None, notes=None, steady_state=None, **kwargs_)

	





GateHHRates


	
class neuroml.nml.nml.GateHHRates(neuro_lex_id=None, id=None, instances=None, notes=None, q10_settings=None, forward_rate=None, reverse_rate=None, **kwargs_)

	





GateHHRatesInf


	
class neuroml.nml.nml.GateHHRatesInf(neuro_lex_id=None, id=None, instances=None, notes=None, q10_settings=None, forward_rate=None, reverse_rate=None, steady_state=None, **kwargs_)

	





GateHHRatesTau


	
class neuroml.nml.nml.GateHHRatesTau(neuro_lex_id=None, id=None, instances=None, notes=None, q10_settings=None, forward_rate=None, reverse_rate=None, time_course=None, **kwargs_)

	





GateHHRatesTauInf


	
class neuroml.nml.nml.GateHHRatesTauInf(neuro_lex_id=None, id=None, instances=None, notes=None, q10_settings=None, forward_rate=None, reverse_rate=None, time_course=None, steady_state=None, **kwargs_)

	





GateHHTauInf


	
class neuroml.nml.nml.GateHHTauInf(neuro_lex_id=None, id=None, instances=None, notes=None, q10_settings=None, time_course=None, steady_state=None, **kwargs_)

	





GateHHUndetermined


	
class neuroml.nml.nml.GateHHUndetermined(neuro_lex_id=None, id=None, instances=None, type=None, notes=None, q10_settings=None, forward_rate=None, reverse_rate=None, time_course=None, steady_state=None, sub_gates=None, **kwargs_)

	Note all sub elements for gateHHrates, gateHHratesTau,
gateFractional etc. allowed here. Which are valid should be
constrained by what type is set







GateKS


	
class neuroml.nml.nml.GateKS(neuro_lex_id=None, id=None, instances=None, notes=None, q10_settings=None, closed_states=None, open_states=None, forward_transition=None, reverse_transition=None, tau_inf_transition=None, **kwargs_)

	





GradedSynapse


	
class neuroml.nml.nml.GradedSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, conductance=None, delta=None, Vth=None, k=None, erev=None, **kwargs_)

	Based on synapse in Methods of
http://www.nature.com/neuro/journal/v7/n12/abs/nn1352.html.







GridLayout


	
class neuroml.nml.nml.GridLayout(x_size=None, y_size=None, z_size=None, **kwargs_)

	





HHRate


	
class neuroml.nml.nml.HHRate(type=None, rate=None, midpoint=None, scale=None, **kwargs_)

	





HHTime


	
class neuroml.nml.nml.HHTime(type=None, rate=None, midpoint=None, scale=None, tau=None, **kwargs_)

	





HHVariable


	
class neuroml.nml.nml.HHVariable(type=None, rate=None, midpoint=None, scale=None, **kwargs_)

	





HH_cond_exp


	
class neuroml.nml.nml.HH_cond_exp(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, cm=None, i_offset=None, tau_syn_E=None, tau_syn_I=None, v_init=None, v_offset=None, e_rev_E=None, e_rev_I=None, e_rev_K=None, e_rev_Na=None, e_rev_leak=None, g_leak=None, gbar_K=None, gbar_Na=None, **kwargs_)

	





IF_cond_alpha


	
class neuroml.nml.nml.IF_cond_alpha(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, cm=None, i_offset=None, tau_syn_E=None, tau_syn_I=None, v_init=None, tau_m=None, tau_refrac=None, v_reset=None, v_rest=None, v_thresh=None, e_rev_E=None, e_rev_I=None, **kwargs_)

	





IF_cond_exp


	
class neuroml.nml.nml.IF_cond_exp(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, cm=None, i_offset=None, tau_syn_E=None, tau_syn_I=None, v_init=None, tau_m=None, tau_refrac=None, v_reset=None, v_rest=None, v_thresh=None, e_rev_E=None, e_rev_I=None, **kwargs_)

	





IF_curr_alpha


	
class neuroml.nml.nml.IF_curr_alpha(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, cm=None, i_offset=None, tau_syn_E=None, tau_syn_I=None, v_init=None, tau_m=None, tau_refrac=None, v_reset=None, v_rest=None, v_thresh=None, **kwargs_)

	





IF_curr_exp


	
class neuroml.nml.nml.IF_curr_exp(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, cm=None, i_offset=None, tau_syn_E=None, tau_syn_I=None, v_init=None, tau_m=None, tau_refrac=None, v_reset=None, v_rest=None, v_thresh=None, **kwargs_)

	





IafCell


	
class neuroml.nml.nml.IafCell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, leak_reversal=None, thresh=None, reset=None, C=None, leak_conductance=None, extensiontype_=None, **kwargs_)

	





IafRefCell


	
class neuroml.nml.nml.IafRefCell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, leak_reversal=None, thresh=None, reset=None, C=None, leak_conductance=None, refract=None, **kwargs_)

	





IafTauCell


	
class neuroml.nml.nml.IafTauCell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, leak_reversal=None, thresh=None, reset=None, tau=None, extensiontype_=None, **kwargs_)

	





IafTauRefCell


	
class neuroml.nml.nml.IafTauRefCell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, leak_reversal=None, thresh=None, reset=None, tau=None, refract=None, **kwargs_)

	





Include


	
class neuroml.nml.nml.Include(segment_groups=None, **kwargs_)

	





IncludeType


	
class neuroml.nml.nml.IncludeType(href=None, **kwargs_)

	





InhomogeneousParameter


	
class neuroml.nml.nml.InhomogeneousParameter(neuro_lex_id=None, id=None, variable=None, metric=None, proximal=None, distal=None, **kwargs_)

	





InhomogeneousValue


	
class neuroml.nml.nml.InhomogeneousValue(inhomogeneous_parameters=None, value=None, **kwargs_)

	





InitMembPotential


	
class neuroml.nml.nml.InitMembPotential(value=None, segment_groups='all', **kwargs_)

	Explicitly set initial membrane potential for the cell







Input


	
class neuroml.nml.nml.Input(id=None, target=None, destination=None, segment_id=None, fraction_along=None, extensiontype_=None, **kwargs_)

	Individual input to the cell specified by target


	
get_fraction_along()

	Get fraction along.

Returns 0.5 is fraction_along was not set.






	
get_segment_id()

	Get the ID of the segment.

Returns 0 if segment_id was not set.






	
get_target_cell_id()

	Get ID of target cell.











InputList


	
class neuroml.nml.nml.InputList(neuro_lex_id=None, id=None, populations=None, component=None, input=None, input_ws=None, **kwargs_)

	List of inputs to a population. Currents will be provided by the
specified component.


	
exportHdf5(h5file, h5Group)

	Export to HDF5 file.











InputW


	
class neuroml.nml.nml.InputW(id=None, target=None, destination=None, segment_id=None, fraction_along=None, weight=None, **kwargs_)

	Individual input to the cell specified by target. Includes setting
of _weight for the connection


	
get_weight()

	Get weight.

If weight is not set, the default value of 1.0 is returned.











Instance


	
class neuroml.nml.nml.Instance(id=None, i=None, j=None, k=None, location=None, **kwargs_)

	





InstanceRequirement


	
class neuroml.nml.nml.InstanceRequirement(name=None, type=None, **kwargs_)

	





IntracellularProperties


	
class neuroml.nml.nml.IntracellularProperties(species=None, resistivities=None, extensiontype_=None, **kwargs_)

	





IntracellularProperties2CaPools


	
class neuroml.nml.nml.IntracellularProperties2CaPools(species=None, resistivities=None, **kwargs_)

	





IonChannel


	
class neuroml.nml.nml.IonChannel(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, q10_conductance_scalings=None, species=None, type=None, conductance=None, gates=None, gate_hh_rates=None, gate_h_hrates_taus=None, gate_hh_tau_infs=None, gate_h_hrates_infs=None, gate_h_hrates_tau_infs=None, gate_hh_instantaneouses=None, gate_fractionals=None, extensiontype_=None, **kwargs_)

	Note ionChannel and ionChannelHH are currently functionally
identical. This is needed since many existing examples use
ionChannel, some use ionChannelHH. One of these should be
removed, probably ionChannelHH.







IonChannelHH


	
class neuroml.nml.nml.IonChannelHH(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, q10_conductance_scalings=None, species=None, type=None, conductance=None, gates=None, gate_hh_rates=None, gate_h_hrates_taus=None, gate_hh_tau_infs=None, gate_h_hrates_infs=None, gate_h_hrates_tau_infs=None, gate_hh_instantaneouses=None, gate_fractionals=None, **kwargs_)

	Note ionChannel and ionChannelHH are currently functionally
identical. This is needed since many existing examples use
ionChannel, some use ionChannelHH. One of these should be
removed, probably ionChannelHH.







IonChannelKS


	
class neuroml.nml.nml.IonChannelKS(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, species=None, conductance=None, gate_kses=None, **kwargs_)

	Kinetic scheme based ion channel.







IonChannelScalable


	
class neuroml.nml.nml.IonChannelScalable(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, q10_conductance_scalings=None, extensiontype_=None, **kwargs_)

	





IonChannelVShift


	
class neuroml.nml.nml.IonChannelVShift(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, q10_conductance_scalings=None, species=None, type=None, conductance=None, gates=None, gate_hh_rates=None, gate_h_hrates_taus=None, gate_hh_tau_infs=None, gate_h_hrates_infs=None, gate_h_hrates_tau_infs=None, gate_hh_instantaneouses=None, gate_fractionals=None, v_shift=None, **kwargs_)

	Same as ionChannel, but with a vShift parameter to change voltage
activation of gates. The exact usage of vShift in expressions
for rates is determined by the individual gates.







Izhikevich2007Cell


	
class neuroml.nml.nml.Izhikevich2007Cell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, C=None, v0=None, k=None, vr=None, vt=None, vpeak=None, a=None, b=None, c=None, d=None, **kwargs_)

	





IzhikevichCell


	
class neuroml.nml.nml.IzhikevichCell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, v0=None, thresh=None, a=None, b=None, c=None, d=None, **kwargs_)

	





LEMS_Property


	
class neuroml.nml.nml.LEMS_Property(name=None, dimension=None, description=None, default_value=None, **kwargs_)

	





Layout


	
class neuroml.nml.nml.Layout(spaces=None, random=None, grid=None, unstructured=None, **kwargs_)

	





LinearGradedSynapse


	
class neuroml.nml.nml.LinearGradedSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, conductance=None, **kwargs_)

	Behaves just like a one way gap junction.







Location


	
class neuroml.nml.nml.Location(x=None, y=None, z=None, **kwargs_)

	





Member


	
class neuroml.nml.nml.Member(segments=None, **kwargs_)

	





MembraneProperties


	
class neuroml.nml.nml.MembraneProperties(channel_populations=None, channel_densities=None, channel_density_v_shifts=None, channel_density_nernsts=None, channel_density_ghks=None, channel_density_ghk2s=None, channel_density_non_uniforms=None, channel_density_non_uniform_nernsts=None, channel_density_non_uniform_ghks=None, spike_threshes=None, specific_capacitances=None, init_memb_potentials=None, extensiontype_=None, **kwargs_)

	





MembraneProperties2CaPools


	
class neuroml.nml.nml.MembraneProperties2CaPools(channel_populations=None, channel_densities=None, channel_density_v_shifts=None, channel_density_nernsts=None, channel_density_ghks=None, channel_density_ghk2s=None, channel_density_non_uniforms=None, channel_density_non_uniform_nernsts=None, channel_density_non_uniform_ghks=None, spike_threshes=None, specific_capacitances=None, init_memb_potentials=None, channel_density_nernst_ca2s=None, **kwargs_)

	





Morphology


	
class neuroml.nml.nml.Morphology(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, segments=None, segment_groups=None, **kwargs_)

	Standalone element which is usually inside a single cell, but could
be outside and referenced by id.


	
property num_segments

	Get the number of segments included in this cell morphology.


	Returns

	number of segments



	Return type

	int















NamedDimensionalType


	
class neuroml.nml.nml.NamedDimensionalType(name=None, dimension=None, description=None, extensiontype_=None, **kwargs_)

	





NamedDimensionalVariable


	
class neuroml.nml.nml.NamedDimensionalVariable(name=None, dimension=None, description=None, exposure=None, extensiontype_=None, **kwargs_)

	





Network


	
class neuroml.nml.nml.Network(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, type=None, temperature=None, spaces=None, regions=None, extracellular_properties=None, populations=None, cell_sets=None, synaptic_connections=None, projections=None, electrical_projections=None, continuous_projections=None, explicit_inputs=None, input_lists=None, **kwargs_)

	
	
exportHdf5(h5file, h5Group)

	Export to HDF5 file.






	
get_by_id(id)

	Get a component by its ID


	Parameters

	id (str) – ID of component to find



	Returns

	component with specified ID or None if no component with specified ID found















NeuroMLDocument


	
class neuroml.nml.nml.NeuroMLDocument(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, includes=None, extracellular_properties=None, intracellular_properties=None, morphology=None, ion_channel=None, ion_channel_hhs=None, ion_channel_v_shifts=None, ion_channel_kses=None, decaying_pool_concentration_models=None, fixed_factor_concentration_models=None, alpha_current_synapses=None, alpha_synapses=None, exp_one_synapses=None, exp_two_synapses=None, exp_three_synapses=None, blocking_plastic_synapses=None, double_synapses=None, gap_junctions=None, silent_synapses=None, linear_graded_synapses=None, graded_synapses=None, biophysical_properties=None, cells=None, cell2_ca_poolses=None, base_cells=None, iaf_tau_cells=None, iaf_tau_ref_cells=None, iaf_cells=None, iaf_ref_cells=None, izhikevich_cells=None, izhikevich2007_cells=None, ad_ex_ia_f_cells=None, fitz_hugh_nagumo_cells=None, fitz_hugh_nagumo1969_cells=None, pinsky_rinzel_ca3_cells=None, pulse_generators=None, pulse_generator_dls=None, sine_generators=None, sine_generator_dls=None, ramp_generators=None, ramp_generator_dls=None, compound_inputs=None, compound_input_dls=None, voltage_clamps=None, voltage_clamp_triples=None, spike_arrays=None, timed_synaptic_inputs=None, spike_generators=None, spike_generator_randoms=None, spike_generator_poissons=None, spike_generator_ref_poissons=None, poisson_firing_synapses=None, transient_poisson_firing_synapses=None, IF_curr_alpha=None, IF_curr_exp=None, IF_cond_alpha=None, IF_cond_exp=None, EIF_cond_exp_isfa_ista=None, EIF_cond_alpha_isfa_ista=None, HH_cond_exp=None, exp_cond_synapses=None, alpha_cond_synapses=None, exp_curr_synapses=None, alpha_curr_synapses=None, SpikeSourcePoisson=None, networks=None, ComponentType=None, **kwargs_)

	
	
append(element)

	Append an element


	Parameters

	element (Object) – element to append










	
get_by_id(id)

	Get a component by specifying its ID.


	Parameters

	id (str) – id of Component to get



	Returns

	Component with given ID or None if no Component with provided ID was found










	
summary(show_includes=True, show_non_network=True)

	Get a pretty-printed summary of the complete NeuroMLDocument.

This includes information on the various Components included in the
NeuroMLDocument: networks, cells, projections, synapses, and so on.











OpenState


	
class neuroml.nml.nml.OpenState(neuro_lex_id=None, id=None, **kwargs_)

	





Parameter


	
class neuroml.nml.nml.Parameter(name=None, dimension=None, description=None, **kwargs_)

	





Path


	
class neuroml.nml.nml.Path(from_=None, to=None, **kwargs_)

	





PinskyRinzelCA3Cell


	
class neuroml.nml.nml.PinskyRinzelCA3Cell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, i_soma=None, i_dend=None, gc=None, g_ls=None, g_ld=None, g_na=None, g_kdr=None, g_ca=None, g_kahp=None, g_kc=None, g_nmda=None, g_ampa=None, e_na=None, e_ca=None, e_k=None, e_l=None, qd0=None, pp=None, alphac=None, betac=None, cm=None, **kwargs_)

	





PlasticityMechanism


	
class neuroml.nml.nml.PlasticityMechanism(type=None, init_release_prob=None, tau_rec=None, tau_fac=None, **kwargs_)

	





Point3DWithDiam


	
class neuroml.nml.nml.Point3DWithDiam(x=None, y=None, z=None, diameter=None, **kwargs_)

	A 3D point with diameter.


	
distance_to(other_3d_point)

	Find the distance between this point and another.


	Parameters

	other_3d_point (Point3DWithDiam) – other 3D point to calculate distance to



	Returns

	distance between the two points



	Return type

	float















PoissonFiringSynapse


	
class neuroml.nml.nml.PoissonFiringSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, average_rate=None, synapse=None, spike_target=None, **kwargs_)

	





Population


	
class neuroml.nml.nml.Population(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, component=None, size=None, type=None, extracellular_properties=None, layout=None, instances=None, **kwargs_)

	
	
exportHdf5(h5file, h5Group)

	Export to HDF5 file.






	
get_size()

	









Projection


	
class neuroml.nml.nml.Projection(neuro_lex_id=None, id=None, presynaptic_population=None, postsynaptic_population=None, synapse=None, connections=None, connection_wds=None, **kwargs_)

	Projection (set of synaptic connections) between two populations.
Chemical/event based synaptic transmission


	
exportHdf5(h5file, h5Group)

	Export to HDF5 file.











Property


	
class neuroml.nml.nml.Property(tag=None, value=None, **kwargs_)

	Generic property with a tag and value







ProximalDetails


	
class neuroml.nml.nml.ProximalDetails(translation_start=None, **kwargs_)

	





PulseGenerator


	
class neuroml.nml.nml.PulseGenerator(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, delay=None, duration=None, amplitude=None, **kwargs_)

	Generates a constant current pulse of a certain amplitude (with
dimensions for current) for a specified duration after a delay.







PulseGeneratorDL


	
class neuroml.nml.nml.PulseGeneratorDL(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, delay=None, duration=None, amplitude=None, **kwargs_)

	Generates a constant current pulse of a certain amplitude (non
dimensional) for a specified duration after a delay.







Q10ConductanceScaling


	
class neuroml.nml.nml.Q10ConductanceScaling(q10_factor=None, experimental_temp=None, **kwargs_)

	





Q10Settings


	
class neuroml.nml.nml.Q10Settings(type=None, fixed_q10=None, q10_factor=None, experimental_temp=None, **kwargs_)

	





RampGenerator


	
class neuroml.nml.nml.RampGenerator(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, delay=None, duration=None, start_amplitude=None, finish_amplitude=None, baseline_amplitude=None, **kwargs_)

	





RampGeneratorDL


	
class neuroml.nml.nml.RampGeneratorDL(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, delay=None, duration=None, start_amplitude=None, finish_amplitude=None, baseline_amplitude=None, **kwargs_)

	





RandomLayout


	
class neuroml.nml.nml.RandomLayout(number=None, regions=None, **kwargs_)

	





ReactionScheme


	
class neuroml.nml.nml.ReactionScheme(neuro_lex_id=None, id=None, source=None, type=None, anytypeobjs_=None, **kwargs_)

	





Region


	
class neuroml.nml.nml.Region(neuro_lex_id=None, id=None, spaces=None, anytypeobjs_=None, **kwargs_)

	





Requirement


	
class neuroml.nml.nml.Requirement(name=None, dimension=None, description=None, **kwargs_)

	





Resistivity


	
class neuroml.nml.nml.Resistivity(value=None, segment_groups='all', **kwargs_)

	The resistivity, or specific axial resistance, of the cytoplasm


	
validate_Nml2Quantity_resistivity(value)

	




	
validate_Nml2Quantity_resistivity_patterns_ = [['^-?([0-9]*(\\.[0-9]+)?)([eE]-?[0-9]+)?[\\s]*(ohm_cm|kohm_cm|ohm_m)$']]

	









ReverseTransition


	
class neuroml.nml.nml.ReverseTransition(neuro_lex_id=None, id=None, from_=None, to=None, anytypeobjs_=None, **kwargs_)

	





Segment


	
class neuroml.nml.nml.Segment(neuro_lex_id=None, id=None, name=None, parent=None, proximal=None, distal=None, **kwargs_)

	
	
property length

	Get the length of the segment.


	Returns

	length of the segment



	Return type

	float










	
property surface_area

	Get the surface area of the segment.


	Returns

	surface area of segment



	Return type

	float










	
property volume

	Get the volume of the segment.


	Returns

	volume of segment



	Return type

	float















SegmentEndPoint


	
class neuroml.nml.nml.SegmentEndPoint(segments=None, **kwargs_)

	





SegmentGroup


	
class neuroml.nml.nml.SegmentGroup(neuro_lex_id=None, id=None, notes=None, properties=None, annotation=None, members=None, includes=None, paths=None, sub_trees=None, inhomogeneous_parameters=None, **kwargs_)

	





SegmentParent


	
class neuroml.nml.nml.SegmentParent(segments=None, fraction_along='1', **kwargs_)

	





SilentSynapse


	
class neuroml.nml.nml.SilentSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, **kwargs_)

	Dummy synapse which emits no current. Used as presynaptic endpoint
for analog synaptic connection (continuousConnection).







SineGenerator


	
class neuroml.nml.nml.SineGenerator(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, delay=None, phase=None, duration=None, amplitude=None, period=None, **kwargs_)

	





SineGeneratorDL


	
class neuroml.nml.nml.SineGeneratorDL(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, delay=None, phase=None, duration=None, amplitude=None, period=None, **kwargs_)

	





Space


	
class neuroml.nml.nml.Space(neuro_lex_id=None, id=None, based_on=None, structure=None, **kwargs_)

	





SpaceStructure


	
class neuroml.nml.nml.SpaceStructure(x_spacing=None, y_spacing=None, z_spacing=None, x_start=0, y_start=0, z_start=0, **kwargs_)

	





Species


	
class neuroml.nml.nml.Species(id=None, concentration_model=None, ion=None, initial_concentration=None, initial_ext_concentration=None, segment_groups='all', **kwargs_)

	Specifying the ion here again is redundant, the ion name should be
the same as id. Kept for now until LEMS implementation can
select by id. TODO: remove.







SpecificCapacitance


	
class neuroml.nml.nml.SpecificCapacitance(value=None, segment_groups='all', **kwargs_)

	Capacitance per unit area







Spike


	
class neuroml.nml.nml.Spike(neuro_lex_id=None, id=None, time=None, **kwargs_)

	





SpikeArray


	
class neuroml.nml.nml.SpikeArray(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, spikes=None, **kwargs_)

	





SpikeGenerator


	
class neuroml.nml.nml.SpikeGenerator(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, period=None, **kwargs_)

	





SpikeGeneratorPoisson


	
class neuroml.nml.nml.SpikeGeneratorPoisson(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, average_rate=None, extensiontype_=None, **kwargs_)

	





SpikeGeneratorRandom


	
class neuroml.nml.nml.SpikeGeneratorRandom(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, max_isi=None, min_isi=None, **kwargs_)

	





SpikeGeneratorRefPoisson


	
class neuroml.nml.nml.SpikeGeneratorRefPoisson(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, average_rate=None, minimum_isi=None, **kwargs_)

	





SpikeSourcePoisson


	
class neuroml.nml.nml.SpikeSourcePoisson(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, start=None, duration=None, rate=None, **kwargs_)

	





SpikeThresh


	
class neuroml.nml.nml.SpikeThresh(value=None, segment_groups='all', **kwargs_)

	Membrane potential at which to emit a spiking event. Note, usually
the spiking event will not be emitted again until the membrane
potential has fallen below this value and rises again to cross
it in a positive direction.







Standalone


	
class neuroml.nml.nml.Standalone(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, extensiontype_=None, **kwargs_)

	Elements which can stand alone and be referenced by id, e.g. cell,
morphology.







StateVariable


	
class neuroml.nml.nml.StateVariable(name=None, dimension=None, description=None, exposure=None, **kwargs_)

	





SubTree


	
class neuroml.nml.nml.SubTree(from_=None, to=None, **kwargs_)

	





SynapticConnection


	
class neuroml.nml.nml.SynapticConnection(from_=None, to=None, synapse=None, destination=None, **kwargs_)

	Single explicit connection. Introduced to test connections in LEMS.
Will probably be removed in favour of connections wrapped in
projection element







TauInfTransition


	
class neuroml.nml.nml.TauInfTransition(neuro_lex_id=None, id=None, from_=None, to=None, steady_state=None, time_course=None, **kwargs_)

	





TimeDerivative


	
class neuroml.nml.nml.TimeDerivative(variable=None, value=None, **kwargs_)

	





TimedSynapticInput


	
class neuroml.nml.nml.TimedSynapticInput(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, synapse=None, spike_target=None, spikes=None, **kwargs_)

	





TransientPoissonFiringSynapse


	
class neuroml.nml.nml.TransientPoissonFiringSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, average_rate=None, delay=None, duration=None, synapse=None, spike_target=None, **kwargs_)

	





UnstructuredLayout


	
class neuroml.nml.nml.UnstructuredLayout(number=None, **kwargs_)

	





VariableParameter


	
class neuroml.nml.nml.VariableParameter(parameter=None, segment_groups=None, inhomogeneous_value=None, **kwargs_)

	





VoltageClamp


	
class neuroml.nml.nml.VoltageClamp(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, delay=None, duration=None, target_voltage=None, simple_series_resistance=None, **kwargs_)

	





VoltageClampTriple


	
class neuroml.nml.nml.VoltageClampTriple(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, active=None, delay=None, duration=None, conditioning_voltage=None, testing_voltage=None, return_voltage=None, simple_series_resistance=None, **kwargs_)

	





basePyNNCell


	
class neuroml.nml.nml.basePyNNCell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, cm=None, i_offset=None, tau_syn_E=None, tau_syn_I=None, v_init=None, extensiontype_=None, **kwargs_)

	





basePyNNIaFCell


	
class neuroml.nml.nml.basePyNNIaFCell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, cm=None, i_offset=None, tau_syn_E=None, tau_syn_I=None, v_init=None, tau_m=None, tau_refrac=None, v_reset=None, v_rest=None, v_thresh=None, extensiontype_=None, **kwargs_)

	





basePyNNIaFCondCell


	
class neuroml.nml.nml.basePyNNIaFCondCell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, cm=None, i_offset=None, tau_syn_E=None, tau_syn_I=None, v_init=None, tau_m=None, tau_refrac=None, v_reset=None, v_rest=None, v_thresh=None, e_rev_E=None, e_rev_I=None, extensiontype_=None, **kwargs_)

	








            

          

      

      

    

  

    
      
          
            
  
loaders Module


	
class neuroml.loaders.ArrayMorphLoader

	Bases: object


	
classmethod load(filepath)

	Right now this load method isn’t done in a very nice way.
TODO: Complete refactoring.










	
class neuroml.loaders.JSONLoader

	Bases: object


	
classmethod load(file)

	




	
classmethod load_from_mongodb(db, id, host=None, port=None)

	








	
class neuroml.loaders.NeuroMLHdf5Loader

	Bases: object


	
classmethod load(src, optimized=False)

	








	
class neuroml.loaders.NeuroMLLoader

	Bases: object


	
classmethod load(src)

	








	
class neuroml.loaders.SWCLoader

	Bases: object

WARNING: Class defunct


	
classmethod load_swc_single(src, name=None)

	








	
neuroml.loaders.print_(text, verbose=True)

	




	
neuroml.loaders.read_neuroml2_file(nml2_file_name, include_includes=False, verbose=False, already_included=[], print_method=<function print_>, optimized=False)

	




	
neuroml.loaders.read_neuroml2_string(nml2_string, include_includes=False, verbose=False, already_included=[], print_method=<function print_>, optimized=False, base_path=None)

	






            

          

      

      

    

  

    
      
          
            
  
writers Module


	
class neuroml.writers.ArrayMorphWriter

	Bases: object

For now just testing a simple method which can write a morphology, not a NeuroMLDocument.


	
classmethod write(data, filepath)

	








	
class neuroml.writers.JSONWriter

	Bases: object

Write a NeuroMLDocument to JSON, particularly useful
when dealing with lots of ArrayMorphs.


	
classmethod write(neuroml_document, file)

	




	
classmethod write_to_mongodb(neuroml_document, db, host=None, port=None, id=None)

	








	
class neuroml.writers.NeuroMLHdf5Writer

	Bases: object


	
classmethod write(nml_doc, h5_file_name, embed_xml=True, compress=True)

	








	
class neuroml.writers.NeuroMLWriter

	Bases: object


	
classmethod write(nmldoc, file, close=True)

	Writes from NeuroMLDocument to nml file
in future can implement from other types
via chain of responsibility pattern.












            

          

      

      

    

  

    
      
          
            
  
utils Module

Utilities for checking generated code


	
neuroml.utils.add_all_to_document(nml_doc_src, nml_doc_tgt, verbose=False)

	Add all members of the source NeuroML document to the target NeuroML document.


	Parameters

	
	nml_doc_src (NeuroMLDocument) – source NeuroML document to copy from


	nml_doc_tgt (NeuroMLDocument) – target NeuroML document to copy to


	verbose (bool) – control verbosity of working






	Raises

	Exception – if a member could not be copied.










	
neuroml.utils.append_to_element(parent, child)

	Append a child element to a parent Component


	Parameters

	
	parent (Object) – parent NeuroML component to add element to


	child (Object) – child NeuroML component to be added to parent






	Raises

	Exception – when the child could not be added to the parent










	
neuroml.utils.get_summary(nml_file_name)

	Get a summary of the given NeuroML file.


	Parameters

	nml_file_name (str) – name of NeuroML file to get summary of



	Returns

	summary of provided file



	Return type

	str










	
neuroml.utils.has_segment_fraction_info(connections)

	Check if connections include fraction information


	Parameters

	connections (list) – list of connection objects



	Returns

	True if connections include fragment information, otherwise False



	Return type

	Boolean










	
neuroml.utils.is_valid_neuroml2(file_name)

	Check if a file is valid NeuroML2.


	Parameters

	file_name (str) – name of NeuroML file to check



	Returns

	True if file is valid, False if not.



	Return type

	Boolean










	
neuroml.utils.main()

	




	
neuroml.utils.print_summary(nml_file_name)

	Print a summary of the NeuroML model in the given file.


	Parameters

	nml_file_name (str) – name of NeuroML file to print summary of










	
neuroml.utils.validate_neuroml2(file_name)

	Validate a NeuroML document against the NeuroML schema specification.


	Parameters

	file_name (str) – name of NeuroML file to validate.












            

          

      

      

    

  

    
      
          
            
  
arraymorph Module




            

          

      

      

    

  

    
      
          
            
  
Examples

The examples in this section are intended to give in depth overviews of how to accomplish
specific tasks with libNeuroML.

These examples are located in the neuroml/examples directory and can
be tested to confirm they work by running the run_all.py script.


Examples


	Examples


	Creating a NeuroML morphology


	Loading and modifying a file


	Building a network


	Building a 3D network


	Ion channels


	PyNN models


	Synapses


	Working with JSON serialization


	Working with arraymorphs


	Working with Izhikevich Cells











Creating a NeuroML morphology

"""
Example of connecting segments together to create a 
multicompartmental model of a cell.
"""

import neuroml
import neuroml.writers as writers

p = neuroml.Point3DWithDiam(x=0, y=0, z=0, diameter=50)
d = neuroml.Point3DWithDiam(x=50, y=0, z=0, diameter=50)
soma = neuroml.Segment(proximal=p, distal=d)
soma.name = "Soma"
soma.id = 0

# Make an axon with 100 compartments:

parent = neuroml.SegmentParent(segments=soma.id)
parent_segment = soma
axon_segments = []
seg_id = 1

for i in range(100):
    p = neuroml.Point3DWithDiam(
        x=parent_segment.distal.x,
        y=parent_segment.distal.y,
        z=parent_segment.distal.z,
        diameter=0.1,
    )

    d = neuroml.Point3DWithDiam(
        x=parent_segment.distal.x + 10,
        y=parent_segment.distal.y,
        z=parent_segment.distal.z,
        diameter=0.1,
    )

    axon_segment = neuroml.Segment(proximal=p, distal=d, parent=parent)

    axon_segment.id = seg_id

    axon_segment.name = "axon_segment_" + str(axon_segment.id)

    # now reset everything:
    parent = neuroml.SegmentParent(segments=axon_segment.id)
    parent_segment = axon_segment
    seg_id += 1

    axon_segments.append(axon_segment)

test_morphology = neuroml.Morphology()
test_morphology.segments.append(soma)
test_morphology.segments += axon_segments
test_morphology.id = "TestMorphology"

cell = neuroml.Cell()
cell.name = "TestCell"
cell.id = "TestCell"
cell.morphology = test_morphology


doc = neuroml.NeuroMLDocument(id="TestNeuroMLDocument")

doc.cells.append(cell)

nml_file = "tmp/testmorphwrite.nml"

writers.NeuroMLWriter.write(doc, nml_file)

print("Written morphology file to: " + nml_file)

###### Validate the NeuroML ######

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)







Loading and modifying a file

"""
In this example an axon is built, a morphology is loaded, the axon is
then connected to the loadeed morphology.
"""

import neuroml
import neuroml.loaders as loaders
import neuroml.writers as writers

fn = "./test_files/Purk2M9s.nml"
doc = loaders.NeuroMLLoader.load(fn)
print("Loaded morphology file from: " + fn)

# get the parent segment:
parent_segment = doc.cells[0].morphology.segments[0]

parent = neuroml.SegmentParent(segments=parent_segment.id)

# make an axon:
seg_id = 5000  # need a way to get a unique id from a morphology
axon_segments = []
for i in range(10):
    p = neuroml.Point3DWithDiam(
        x=parent_segment.distal.x,
        y=parent_segment.distal.y,
        z=parent_segment.distal.z,
        diameter=0.1,
    )

    d = neuroml.Point3DWithDiam(
        x=parent_segment.distal.x + 10,
        y=parent_segment.distal.y,
        z=parent_segment.distal.z,
        diameter=0.1,
    )

    axon_segment = neuroml.Segment(proximal=p, distal=d, parent=parent)

    axon_segment.id = seg_id

    axon_segment.name = "axon_segment_" + str(axon_segment.id)

    # now reset everything:
    parent = neuroml.SegmentParent(segments=axon_segment.id)
    parent_segment = axon_segment
    seg_id += 1

    axon_segments.append(axon_segment)

doc.cells[0].morphology.segments += axon_segments

nml_file = "./tmp/modified_morphology.nml"

writers.NeuroMLWriter.write(doc, nml_file)

print("Saved modified morphology file to: " + nml_file)


###### Validate the NeuroML ######

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)







Building a network

"""

Example to build a full spiking IaF network
through libNeuroML, save it as XML and validate it

"""

from neuroml import NeuroMLDocument
from neuroml import IafCell
from neuroml import Network
from neuroml import ExpOneSynapse
from neuroml import Population
from neuroml import PulseGenerator
from neuroml import ExplicitInput
from neuroml import SynapticConnection
import neuroml.writers as writers
from random import random


nml_doc = NeuroMLDocument(id="IafNet")

IafCell0 = IafCell(
    id="iaf0",
    C="1.0 nF",
    thresh="-50mV",
    reset="-65mV",
    leak_conductance="10 nS",
    leak_reversal="-65mV",
)

nml_doc.iaf_cells.append(IafCell0)

IafCell1 = IafCell(
    id="iaf1",
    C="1.0 nF",
    thresh="-50mV",
    reset="-65mV",
    leak_conductance="20 nS",
    leak_reversal="-65mV",
)

nml_doc.iaf_cells.append(IafCell1)

syn0 = ExpOneSynapse(id="syn0", gbase="65nS", erev="0mV", tau_decay="3ms")

nml_doc.exp_one_synapses.append(syn0)

net = Network(id="IafNet")

nml_doc.networks.append(net)

size0 = 5
pop0 = Population(id="IafPop0", component=IafCell0.id, size=size0)

net.populations.append(pop0)

size1 = 5
pop1 = Population(id="IafPop1", component=IafCell0.id, size=size1)

net.populations.append(pop1)

prob_connection = 0.5

for pre in range(0, size0):

    pg = PulseGenerator(
        id="pulseGen_%i" % pre,
        delay="0ms",
        duration="100ms",
        amplitude="%f nA" % (0.1 * random()),
    )

    nml_doc.pulse_generators.append(pg)

    exp_input = ExplicitInput(target="%s[%i]" % (pop0.id, pre), input=pg.id)

    net.explicit_inputs.append(exp_input)

    for post in range(0, size1):
        # fromxx is used since from is Python keyword
        if random() <= prob_connection:
            syn = SynapticConnection(
                from_="%s[%i]" % (pop0.id, pre),
                synapse=syn0.id,
                to="%s[%i]" % (pop1.id, post),
            )
            net.synaptic_connections.append(syn)

nml_file = "tmp/testnet.nml"
writers.NeuroMLWriter.write(nml_doc, nml_file)


print("Written network file to: " + nml_file)


###### Validate the NeuroML ######

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)







Building a 3D network

"""

Example to build a full spiking IaF network throught libNeuroML & save it as XML & validate it

"""

from neuroml import NeuroMLDocument
from neuroml import Network
from neuroml import ExpOneSynapse
from neuroml import Population
from neuroml import Property
from neuroml import Cell
from neuroml import Location
from neuroml import Instance
from neuroml import Morphology
from neuroml import Point3DWithDiam
from neuroml import Segment
from neuroml import SegmentParent
from neuroml import Projection
from neuroml import Connection

import neuroml.writers as writers
from random import random

soma_diam = 10
soma_len = 10
dend_diam = 2
dend_len = 10
dend_num = 10


def generateRandomMorphology():

    morphology = Morphology()

    p = Point3DWithDiam(x=0, y=0, z=0, diameter=soma_diam)
    d = Point3DWithDiam(x=soma_len, y=0, z=0, diameter=soma_diam)
    soma = Segment(proximal=p, distal=d, name="Soma", id=0)

    morphology.segments.append(soma)
    parent_seg = soma

    for dend_id in range(0, dend_num):

        p = Point3DWithDiam(x=d.x, y=d.y, z=d.z, diameter=dend_diam)
        d = Point3DWithDiam(x=p.x, y=p.y + dend_len, z=p.z, diameter=dend_diam)
        dend = Segment(proximal=p, distal=d, name="Dend_%i" % dend_id, id=1 + dend_id)
        dend.parent = SegmentParent(segments=parent_seg.id)
        parent_seg = dend

        morphology.segments.append(dend)

    morphology.id = "TestMorphology"

    return morphology


def run():

    cell_num = 10
    x_size = 500
    y_size = 500
    z_size = 500

    nml_doc = NeuroMLDocument(id="Net3DExample")

    syn0 = ExpOneSynapse(id="syn0", gbase="65nS", erev="0mV", tau_decay="3ms")
    nml_doc.exp_one_synapses.append(syn0)

    net = Network(id="Net3D")
    nml_doc.networks.append(net)

    proj_count = 0
    # conn_count = 0

    for cell_id in range(0, cell_num):

        cell = Cell(id="Cell_%i" % cell_id)

        cell.morphology = generateRandomMorphology()

        nml_doc.cells.append(cell)

        pop = Population(
            id="Pop_%i" % cell_id, component=cell.id, type="populationList"
        )
        net.populations.append(pop)
        pop.properties.append(Property(tag="color", value="1 0 0"))

        inst = Instance(id="0")
        pop.instances.append(inst)

        inst.location = Location(
            x=str(x_size * random()), y=str(y_size * random()), z=str(z_size * random())
        )

        prob_connection = 0.5
        for post in range(0, cell_num):
            if post is not cell_id and random() <= prob_connection:

                from_pop = "Pop_%i" % cell_id
                to_pop = "Pop_%i" % post

                pre_seg_id = 0
                post_seg_id = 1

                projection = Projection(
                    id="Proj_%i" % proj_count,
                    presynaptic_population=from_pop,
                    postsynaptic_population=to_pop,
                    synapse=syn0.id,
                )
                net.projections.append(projection)
                connection = Connection(
                    id=proj_count,
                    pre_cell_id="%s[%i]" % (from_pop, 0),
                    pre_segment_id=pre_seg_id,
                    pre_fraction_along=random(),
                    post_cell_id="%s[%i]" % (to_pop, 0),
                    post_segment_id=post_seg_id,
                    post_fraction_along=random(),
                )

                projection.connections.append(connection)
                proj_count += 1
                # net.synaptic_connections.append(SynapticConnection(from_="%s[%i]"%(from_pop,0),  to="%s[%i]"%(to_pop,0)))

    #######   Write to file  ######

    nml_file = "tmp/net3d.nml"
    writers.NeuroMLWriter.write(nml_doc, nml_file)

    print("Written network file to: " + nml_file)

    ###### Validate the NeuroML ######

    from neuroml.utils import validate_neuroml2

    validate_neuroml2(nml_file)


run()







Ion channels

"""
Generating a Hodgkin-Huxley Ion Channel and writing it to NeuroML
"""

import neuroml
import neuroml.writers as writers

chan = neuroml.IonChannelHH(
    id="na",
    conductance="10pS",
    species="na",
    notes="This is an example voltage-gated Na channel",
)

m_gate = neuroml.GateHHRates(id="m", instances="3")
h_gate = neuroml.GateHHRates(id="h", instances="1")

m_gate.forward_rate = neuroml.HHRate(
    type="HHExpRate", rate="0.07per_ms", midpoint="-65mV", scale="-20mV"
)

m_gate.reverse_rate = neuroml.HHRate(
    type="HHSigmoidRate", rate="1per_ms", midpoint="-35mV", scale="10mV"
)

h_gate.forward_rate = neuroml.HHRate(
    type="HHExpLinearRate", rate="0.1per_ms", midpoint="-55mV", scale="10mV"
)

h_gate.reverse_rate = neuroml.HHRate(
    type="HHExpRate", rate="0.125per_ms", midpoint="-65mV", scale="-80mV"
)

chan.gate_hh_rates.append(m_gate)
chan.gate_hh_rates.append(h_gate)

doc = neuroml.NeuroMLDocument()
doc.ion_channel_hhs.append(chan)

doc.id = "ChannelMLDemo"

nml_file = "./tmp/ionChannelTest.xml"
writers.NeuroMLWriter.write(doc, nml_file)

print("Written channel file to: " + nml_file)


###### Validate the NeuroML ######

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)







PyNN models

"""

Example to build a PyNN based network

"""

from neuroml import NeuroMLDocument
from neuroml import *
import neuroml.writers as writers
from random import random


########################   Build the network   ####################################

nml_doc = NeuroMLDocument(id="IafNet")


pynn0 = IF_curr_alpha(
    id="IF_curr_alpha_pop_IF_curr_alpha",
    cm="1.0",
    i_offset="0.9",
    tau_m="20.0",
    tau_refrac="10.0",
    tau_syn_E="0.5",
    tau_syn_I="0.5",
    v_init="-65",
    v_reset="-62.0",
    v_rest="-65.0",
    v_thresh="-52.0",
)
nml_doc.IF_curr_alpha.append(pynn0)

pynn1 = HH_cond_exp(
    id="HH_cond_exp_pop_HH_cond_exp",
    cm="0.2",
    e_rev_E="0.0",
    e_rev_I="-80.0",
    e_rev_K="-90.0",
    e_rev_Na="50.0",
    e_rev_leak="-65.0",
    g_leak="0.01",
    gbar_K="6.0",
    gbar_Na="20.0",
    i_offset="0.2",
    tau_syn_E="0.2",
    tau_syn_I="2.0",
    v_init="-65",
    v_offset="-63.0",
)
nml_doc.HH_cond_exp.append(pynn1)

pynnSynn0 = ExpCondSynapse(id="ps1", tau_syn="5", e_rev="0")
nml_doc.exp_cond_synapses.append(pynnSynn0)

nml_file = "tmp/pynn_network.xml"
writers.NeuroMLWriter.write(nml_doc, nml_file)
print("Saved to: " + nml_file)


###### Validate the NeuroML ######

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)







Synapses

"""

Example to create a file with multiple synapse types

"""

from neuroml import NeuroMLDocument
from neuroml import *
import neuroml.writers as writers
from random import random


nml_doc = NeuroMLDocument(id="SomeSynapses")

expOneSyn0 = ExpOneSynapse(id="ampa", tau_decay="5ms", gbase="1nS", erev="0mV")
nml_doc.exp_one_synapses.append(expOneSyn0)

expTwoSyn0 = ExpTwoSynapse(
    id="gaba", tau_decay="12ms", tau_rise="3ms", gbase="1nS", erev="-70mV"
)
nml_doc.exp_two_synapses.append(expTwoSyn0)

bpSyn = BlockingPlasticSynapse(
    id="blockStpSynDep", gbase="1nS", erev="0mV", tau_rise="0.1ms", tau_decay="2ms"
)
bpSyn.notes = "This is a note"
bpSyn.plasticity_mechanism = PlasticityMechanism(
    type="tsodyksMarkramDepMechanism", init_release_prob="0.5", tau_rec="120 ms"
)
bpSyn.block_mechanism = BlockMechanism(
    type="voltageConcDepBlockMechanism",
    species="mg",
    block_concentration="1.2 mM",
    scaling_conc="1.920544 mM",
    scaling_volt="16.129 mV",
)

nml_doc.blocking_plastic_synapses.append(bpSyn)


nml_file = "tmp/synapses.xml"
writers.NeuroMLWriter.write(nml_doc, nml_file)
print("Saved to: " + nml_file)


###### Validate the NeuroML ######

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)







Working with JSON serialization

One thing to note is that the JSONWriter, unlike NeuroMLWriter, will
serializing using array-based (Arraymorph) representation if this has
been used.

"""
In this example an axon is built, a morphology is loaded, the axon is
then connected to the loadeed morphology. The whole thing is serialized
in JSON format, reloaded and validated.
"""

import neuroml
import neuroml.loaders as loaders
import neuroml.writers as writers

fn = "./test_files/Purk2M9s.nml"
doc = loaders.NeuroMLLoader.load(fn)
print("Loaded morphology file from: " + fn)

# get the parent segment:
parent_segment = doc.cells[0].morphology.segments[0]

parent = neuroml.SegmentParent(segments=parent_segment.id)

# make an axon:
seg_id = 5000  # need a way to get a unique id from a morphology
axon_segments = []
for i in range(10):
    p = neuroml.Point3DWithDiam(
        x=parent_segment.distal.x,
        y=parent_segment.distal.y,
        z=parent_segment.distal.z,
        diameter=0.1,
    )

    d = neuroml.Point3DWithDiam(
        x=parent_segment.distal.x + 10,
        y=parent_segment.distal.y,
        z=parent_segment.distal.z,
        diameter=0.1,
    )

    axon_segment = neuroml.Segment(proximal=p, distal=d, parent=parent)

    axon_segment.id = seg_id

    axon_segment.name = "axon_segment_" + str(axon_segment.id)

    # now reset everything:
    parent = neuroml.SegmentParent(segments=axon_segment.id)
    parent_segment = axon_segment
    seg_id += 1

    axon_segments.append(axon_segment)

doc.cells[0].morphology.segments += axon_segments

json_file = "./tmp/modified_morphology.json"

writers.JSONWriter.write(doc, json_file)

print("Saved modified morphology in JSON format to: " + json_file)


##### load it again, this time write it to a normal neuroml file ###

neuroml_document_from_json = loaders.JSONLoader.load(json_file)

print("Re-loaded neuroml document in JSON format to NeuroMLDocument object")

nml_file = "./tmp/modified_morphology_from_json.nml"

writers.NeuroMLWriter.write(neuroml_document_from_json, nml_file)

###### Validate the NeuroML ######

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)







Working with arraymorphs

"""
Example of connecting segments together to create a 
multicompartmental model of a cell.

In this case ArrayMorphology will be used rather than
Morphology - demonstrating its similarity and
ability to save in HDF5 format
"""

import neuroml
import neuroml.writers as writers
import neuroml.arraymorph as am

p = neuroml.Point3DWithDiam(x=0, y=0, z=0, diameter=50)
d = neuroml.Point3DWithDiam(x=50, y=0, z=0, diameter=50)
soma = neuroml.Segment(proximal=p, distal=d)
soma.name = "Soma"
soma.id = 0

# now make an axon with 100 compartments:

parent = neuroml.SegmentParent(segments=soma.id)
parent_segment = soma
axon_segments = []
seg_id = 1
for i in range(100):
    p = neuroml.Point3DWithDiam(
        x=parent_segment.distal.x,
        y=parent_segment.distal.y,
        z=parent_segment.distal.z,
        diameter=0.1,
    )

    d = neuroml.Point3DWithDiam(
        x=parent_segment.distal.x + 10,
        y=parent_segment.distal.y,
        z=parent_segment.distal.z,
        diameter=0.1,
    )

    axon_segment = neuroml.Segment(proximal=p, distal=d, parent=parent)

    axon_segment.id = seg_id

    axon_segment.name = "axon_segment_" + str(axon_segment.id)

    # now reset everything:
    parent = neuroml.SegmentParent(segments=axon_segment.id)
    parent_segment = axon_segment
    seg_id += 1

    axon_segments.append(axon_segment)

test_morphology = am.ArrayMorphology()
test_morphology.segments.append(soma)
test_morphology.segments += axon_segments
test_morphology.id = "TestMorphology"

cell = neuroml.Cell()
cell.name = "TestCell"
cell.id = "TestCell"
cell.morphology = test_morphology


doc = neuroml.NeuroMLDocument()
# doc.name = "Test neuroML document"

doc.cells.append(cell)
doc.id = "TestNeuroMLDocument"

nml_file = "tmp/arraymorph.nml"

writers.NeuroMLWriter.write(doc, nml_file)

print("Written morphology file to: " + nml_file)

###### Validate the NeuroML ######

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)







Working with Izhikevich Cells

These examples were kindly contributed by Steve Marsh

# from neuroml import NeuroMLDocument
from neuroml import IzhikevichCell
from neuroml.loaders import NeuroMLLoader
from neuroml.utils import validate_neuroml2


def load_izhikevich(filename="./test_files/SingleIzhikevich.nml"):
    nml_filename = filename
    validate_neuroml2(nml_filename)
    nml_doc = NeuroMLLoader.load(nml_filename)

    iz_cells = nml_doc.izhikevich_cells
    for i, iz in enumerate(iz_cells):
        if isinstance(iz, IzhikevichCell):
            neuron_string = "%d %s %s %s %s %s (%s)" % (
                i,
                iz.v0,
                iz.a,
                iz.b,
                iz.c,
                iz.d,
                iz.id,
            )
            print(neuron_string)
        else:
            print("Error: Cell %d is not an IzhikevichCell" % i)


load_izhikevich()





from neuroml import NeuroMLDocument
from neuroml import IzhikevichCell
from neuroml.writers import NeuroMLWriter
from neuroml.utils import validate_neuroml2


def write_izhikevich(filename="./tmp/SingleIzhikevich_test.nml"):
    nml_doc = NeuroMLDocument(id="SingleIzhikevich")
    nml_filename = filename

    iz0 = IzhikevichCell(
        id="iz0", v0="-70mV", thresh="30mV", a="0.02", b="0.2", c="-65.0", d="6"
    )

    nml_doc.izhikevich_cells.append(iz0)

    NeuroMLWriter.write(nml_doc, nml_filename)
    validate_neuroml2(nml_filename)


write_izhikevich()









            

          

      

      

    

  

    
      
          
            
  
References


	VCC+14

	Michael Vella, Robert C. Cannon, Sharon Crook, Andrew P. Davison, Gautham Ganapathy, Hugh P. C. Robinson, R. Angus Silver, and Padraig Gleeson. Libneuroml and pylems: using python to combine procedural and declarative modeling approaches in computational neuroscience. Frontiers in neuroinformatics, 8:38, 2014. doi:10.3389/fninf.2014.00038 [https://doi.org/10.3389/fninf.2014.00038].










            

          

      

      

    

  

    
      
          
            
  
Contributing



	How to contribute
	Setting up

	Sync with upstream

	Working locally on a dedicated branch

	Continuous integration

	Release process





	Regenerating documentation

	Implementation of XML bindings for libNeuroML
	Correct naming conventions

	Addition of helper methods

	Generation of bindings





	Multicompartmental Python API Meeting
	Organisation

	Minutes





	Nodes, Segments and Sections
	Nodes

	Segments

	Sections

	Issues












            

          

      

      

    

  

    
      
          
            
  
How to contribute

libNeuroML development happens on GitHub, so you will need a GitHub account to contribute to the repository.
Contributions are made using the standard Pull Request [http://help.github.com/send-pull-requests/] workflow.


Setting up

Please take a look at the GitHub documentation here: http://help.github.com/fork-a-repo/

To begin, please fork the repo on the GitHub website.
You should now have a libNeuroML under you username.
Next, we clone our fork to get a local copy on our computer:

git clone git@github.com:_username_/libNeuroML.git





While not necessary, it is good practice to add the upstream repository as a remote that you will follow:

cd libNeuroML
git remote add upstream https://github.com/NeuralEnsemble/libNeuroML.git
git fetch upstream





You can check which branch are you following doing:

git branch -a





You should have something like:

git branch -a
* master
  remotes/origin/HEAD -> origin/master
  remotes/origin/master
  remotes/upstream/master







Sync with upstream

Before starting to do some work, please check to see that you have the latest copy of the sources in your local repository:

git fetch upstream
git checkout development
git merge upstream/development







Working locally on a dedicated branch

Now that we have a fork, we can start making our changes to the source code.
The best way to do it is to create a branch with a descriptive name to indicate what are you working on.
Generally, your will branch off from the upstream development branch, which will contain the latest code.

For example, just for the sake of this guide, I’m going to work on issue #2.

git checkout development
git checkout -b fix-2





We can work in this branch, and make as many commits as we need to:

# hack hack hack
git commit -am "some decent commit message here"





Once we have finished working, we can push the branch online to our fork:

git push origin fix-2





We can then open a pull-request to merge our fix-2 branch into upstream/development.
If your code is not ready to be included, you can update the code on your branch and any more commits you add there will be added to the Pull Request.
Members of the libNeuroML development team will then discuss your changes with you, perhaps suggest tweaks, and then merge it when ready.



Continuous integration

libNeuroML uses continuous integration (Wikipedia [https://en.wikipedia.org/wiki/Continuous_integration]).
Each commit to the master or development branches is tested, along with all commits to pull requests.
The latest status of the continuous integration tests can be seen here on GitHub Actions [https://github.com/NeuralEnsemble/libNeuroML/actions].



Release process

libNeuroML is part of the official NeuroML release cycle.
When a new libNeuroML release is ready the following needs to happen:


	Update version number in setup.py


	update version number in doc/conf.py


	update release number in doc/conf.py (same as version number)


	update changelog in README.md


	merge development branch with master (This should happen via pull request - do not do the merge yourself even if you are an owner of the repository.


	push latest release to PyPi




More information on the NeuroML release process can be found on the NeuroML documentation page [https://docs.neuroml.org/Devdocs/ReleaseProcess.html].





            

          

      

      

    

  

    
      
          
            
  
Regenerating documentation

Please create a virtual environment and use the requirements.txt file to install the necessary bits.

In most cases, running make html should be sufficient to regenerate the documentation.
However, if any changes to nml.py have been made, the nml-core-docs.py file in the helpers directory will also need to be run.
This script manually adds each class from nml.py to the documentation as a sub-section using the autoclass sphinx directive instead of the automodule directive which does not allow us to do this.




            

          

      

      

    

  

    
      
          
            
  
Implementation of XML bindings for libNeuroML

The GenerateDS Python package is used to automatically generate the NeuroML XML-bindings in libNeuroML from the NeuroML Schema. This technique can be utilized for any XML Schema and is outlined in this section. The addition of helper methods and enforcement of correct naming conventions is also described. For more detail on how Python bindings for XML are generated, the reader is directed to the GenerateDS and libNeuroML documentation. In the following subsections it is assumed that all commands are executed in a top level directory nml and that GenerateDS is installed. It should be noted that enforcement of naming conventions and addition of helper methods are not required by GenerateDS and default values may be used.


Correct naming conventions

A module named generateds_config.py is placed in the nml directory.
This module contains a Python dictionary called NameTable which maps
the original names specified in the XML Schema to user-specified ones.
The NameTable dictionary can be defined explicitly or generated
programmatically, for example using regular expressions.



Addition of helper methods

Helper methods associated with a class can be added to a Python module as string objects. In the case of libNeuroML the module is called helper_methods.py. The precise implementation details are esoteric and the user is referred to the GenerateDS documentation for details of how this functionality is implemented.



Generation of bindings

Once generateds_config.py and a helper methods module are present in the nml directory a valid XML Schema is required by GenerateDS. The following command generates the nml.py module which contains the XML-bindings:

$ generateDS.py -o nml.py --use-getter-setter=none --user-methods=helper_methods NeuroML_v2beta1.xsd





The -o flag sets the file which the module containing the bindings is to be written to. The –use-getter-setter=none option disables getters and setters for class attributes. The –user-methods flag indicates the name of the helper methods module (See section “Addition of helper methods”). The final parameter (NeuroML_v2beta1.xsd) is the name of the XML Schema used for generating the bindings.





            

          

      

      

    

  

    
      
          
            
  
Multicompartmental Python API Meeting


Organisation

Dates: 25 & 26 June 2012

Location: Room 336, Rockefeller building, UCL, London

Attendees: Sandra Berger, Andrew Davison, Padraig Gleeson, Mike Hull, Steve Marsh, Michele Mattioni, Eugenio Piasini, Mike Vella

Sponsors: This meeting was generously supported by the INCF Multi Scale Modelling Program [http://www.incf.org/programs/modeling].



Minutes


Agreeing on terminology (segments, etc.) & scope

A discussion on the definitions of the key terms Node, Segment and Section is here, and was the basis for discussions on
these definitions at the meeting:

Nodes, Segments and Sections

Agreements

The Python libNeuroML API will use Node as a key building block for morphologies.

Segment is agreed on as the basis for defining morphologies in NeuroML and will be a top level object in libNeuroML,
where it will be
the part of a neurite between two Nodes (proximal & distal).

Segment Group will be the basis for the grouping of these, and will be used to define dendrites, axons, etc.

Section is a term for the cable-like building block in NEURON, and will not be formally used in NeuroML or libNeuroML.

There was a discussion on whether it would be useful to be able to include this concept “by the back door” to enable
lossless import & export of morphologies from NEURON. Padraig’s proposal was to add an attribute (e.g. primary) to the
segmentGroup element to flag a core set of non overlapping segmentGroups, which are continuous (all children are
connected to distal point of parent) which would correspond to the old “cable” concept in NeuroML v1.x.

There was much discussion on the usefulness of this concept and whether it should be a different element/object in the
API from segmentGroup. The outcome was not fully resolved, but as a first test of this concept, Padraig will add the
new attribute to NeuroML, Mike V will add a flag (boolean?) to the API, and at a later point, when the API begins to
interact with native simulators, we can reevaluate the usefulness of the term.



Mike Vella’s current implementation

This is under development at: https://github.com/NeuralEnsemble/libNeuroML/tree/master/neuroml

Mike will continue on this (almost) full time for the next 2 months.

Following the meeting, he will perform a refactoring operation on the code base to better reflect the names used in NeuroML, e.g.


neuroml_doc


cells


morphology # not entirely sure how this works- contains segment groups and is itself a segment group?


segments

segment_groups


segment_groups







biophysical_properties

notes




morphologies

networks

point currents

ion channels

synapses

extracellular properties







It was also decided that certain SegmentGroup names should have reserved names in libNeuroML, the exact implementation of this is undecided:


	Segment groups with reserved names:
	
soma_group

axon_group

apical_dendrite_group

basal_dendrite_group







It was also decided that a segment should only be able to connect to the root of a morphology, the syntax should be something along the lines of:

segment can only connect to root of a morphology


connect syntax examples:


morph2.attach(2,cell2,0.5) (default frac along = None)

and:

morph[2].attach(cell2,0.5)







Mike V was asked to add a clone method to a morphology.

It was decided that fraction_along should be a property of segment.

The syntax for segment groups should be as follows:
group=morph.segment_groups[‘axon_group’]
(in connect merge groups should be false by default - throw an exception, tell the user setting merge_groups = True or rename group will fix this)

This was a subject of great debate and has not been completely settled.



Morphforge latest developments

Mike Hull gave a brief overview of the latest developments with Morphforge:

https://github.com/mikehulluk/morphforge

He pointed out that it’s still undergoing refactoring, but it can be used by other interested parties, and there is
detailed documentation online regarding installation, examples, etc.



Neuronvisio latest developments

Michele Mattioni gave a status update on Neuronvisio:

http://neuronvisio.org

The application has been closely linked to the NEURON simulator but hopefully use of libNeuroML will allow it to be used independently of
NEURON.

Michele showed Neuronvisio’s native HDF5 format as just one possible way to encode model structure + simulation results:
https://github.com/NeuralEnsemble/libNeuroML/blob/master/hdf5Examples/Neuronvisio_medium_cell_example_10ms.h5



Current Python & NeuroML support in MOOSE

A Skype call/Google Hangout was held on Tues at 9:30 to get an update from Bangalore.

The slides from this discussion are here:

https://github.com/NeuralEnsemble/libNeuroML/blob/master/doc/2012_06_26_neuroml_with_pymoose.pdf

As outlined there there are a number of areas in which MOOSE and Moogli import/export NeuroML version 1.x. A number of issues
and desired features missing in v1.x were highlighted, most of which are implemented or planned for NeuroML v2.0.

There was general enthusiasm about the libNeuroML project, and it was felt that MOOSE should eventually transition to
using libNeuroML to import NeuroML models. This will happen in parallel with updating of the MOOSE PyNN implementation.

The MOOSE developers were also keen to see how the new ComponentTypes in NeuroML 2 will map to inbuilt objects in MOOSE
(e.g. Integrate-and-Fire neurons, Markov channel, Izhikevich). They will add simple examples to the latest MOOSE code to
demonstrate their current implementation and discussion can continue on the mailing lists.



Saving to & loading from XML

There was not any detailed discussion on the various strategies for reading/saving XML in Python.

Padraig’s suggestion based on generateDS.py [http://www.rexx.com/~dkuhlman/generateDS.html]: https://github.com/NeuralEnsemble/libNeuroML/tree/master/ideas/padraig/generatedFromV2Schema
produces a very big file, which while usable as an API, e.g. see:

https://github.com/NeuralEnsemble/libNeuroML/blob/master/hhExample/hh_NEUROML2.py

could do with a lot of refactoring. It was felt that a version of this with a very efficient description of morphologies (and network instances)
based on the current work of Mike V is the way forward.



Storing simulation data as HDF5

The examples at: https://github.com/NeuralEnsemble/libNeuroML/tree/master/hdf5Examples have been updated.

The long term aim would be to arrive at a common format here that can be saved by simulators and that
visualisation packages like Moogli and Neuronvisio can read and display. This may be based on Neo: http://packages.python.org/neo/,
but that package’s current lack of ability to deal with data with nonuniform time points (e.g. produced by variable time step
simulations) may be a limiting factor.



General PyNN & NeuroML v2.0 interoperability

There was agreement that libNeuroML will form the basis of the multicompartmental neuron support in PyNN. The extra functionality needed
to interact with simulators is currently termed “Pyramidal”, but this will eventually be fully merged into PyNN.

http://neuralensemble.org/trac/PyNN
http://www.neuroml.org/NeuroML2CoreTypes/PyNN.html
http://www.neuroml.org/pynn.php






            

          

      

      

    

  

    
      
          
            
  
Nodes, Segments and Sections

An attempt to clarify these interrelated terms used in describing morphologies. Names in bold type are used for elements of the
NeuroML object model.


Nodes

A node is a 3D point with diameter information which forms the basis for 3D morphological reconstructions.

These nodes (or points) are the fundamental building blocks in the SWC and Neurolucida formats. This method of description
is based on the assumption that each node is physically connected to another node.



Segments

A segment (according to NeuroML v1&2) is a part of a neuronal tree between two 3D points with diameters (proximal & distal).
The term node isn’t used in NeuroML but the above description describes perfectly well the proximal & distal points.
Cell morphology elements consist of lists of segments (each with unique integer id, and optional name).

All segments, apart from the root segment, have a parent segment. If the proximal point of the segment is not specified,
the distal point of the parent segment is used for the proximal point of the child.

A special case is defined where proximal == distal, and the segment is assumed to be a sphere at that location
with the specified diameter.

Segments can be grouped into segmentGroups in NeuroML v2.0. These can be used to specify “apical_dendrites”, “axon_group”,
etc., which in turn can be used for placing channels on the cell.

An example of a NeuroML v2.0 cell is here [http://sourceforge.net/apps/trac/neuroml/browser/NeuroML2/examples/NML2_SimpleMorphology.nml].

libNeuroML will allow low level access to create and modify morphologies by handling nodes. Segments will also be top
level objects in the API. The XML serialisation will only specify segments with proximal & distal points, but
the HDF5 version may have an efficient serialisation of nodes & segments.



Sections

The concept of section is fundamentally important in NEURON. A section in this simulator is an unbranched cable which can have multiple
3D points outlining the structure of a neurite in 3D. These points are used to determine the surface area along the section. NEURON
can vary the spatial discretisation of the neurite by varying the “nseg” value of the section, e.g. a section with 20 3D
points and nseg =4 will be split into 4 parts of equal length for simulating (as isopotential compartments), with the surface area (and so total channel
conductance) of each determined by the set of 3D points in that part.

There was a similar concept to this in NeuroML v1.x, the cable. Each segment had an attribute for the cable id, and these were used for mapping
to and from NEURON. Cables were unbranched, and so all segments after the first in the cable only had distal points, see
this example [http://www.neuroml.org/NeuroMLValidator/ViewNeuroMLFile.jsp?localFile=NeuroMLFiles/Examples/ChannelML/PyramidalCell.xml].

The cable concept was removed in NeuroML v2.0, as this is was seen as imposing concepts from compartmental modelling
on the basic morphological descriptions of cells. There is only a segmentGroup element for grouping segments, though
a segment can belong to multiple segmentGroups, which don’t need to be unbranched (unlike cables). There may need to be a
new attribute in segmentGroup (e.g. primary or unbranched or cable=”true”) which defines a nonoverlapping set of
unbranched segmentGroups, which can be used as the basis for sections in any parsing application which is interested
in them, or be ignored by any other application.

In libNeuroML, a section-like concept can be added at API level, to facilitate building cells, to facilitate import/export
to/from simulators supporting this concept, and to serve as a basis for recompartmentalisation of cells.



Issues


Dendrites in space

One major issue to address is that in many neuronal reconstructions, the soma is not included (or perhaps just an outline
of the soma is given), only the dendrites are. These dendrites’ 3D start points are on the edge of the soma membrane “floating in space”.
Normal procedure for a modeller in this case is to create a spherical soma at this central point and electrically attach the
dendrites to the centre of this.

In this case (and many others) the physical location of the start of the child segments do not correspond to the electrical (or logical)
connection point on the parent. This has advantages and disadvantages:

(+) It allows the real 3D points of the neuronal reconstruction to be retained (useful for visualisation)

(-) This is not unambiguously captured in the simplest morphological formats like SWC, which assume physical connectivity between nodes/points

This scenario is supported in NeuroML v1&2, where a child segment has the option to redefine its start point (by adding a proximal)
with the child <-> parent relationship defining the electrical connection. This allows lossless import & export from NEURON and
removes the ambiguity of more compact formats like SWC and Neurolucida.



Connections mid segment

Another option for electrical connections (also influences by NEURON sections) is the ability for segments to
(electrically/logically) connect to a point inside a segment. This is specified by adding a fractionAlong attribute
to the parent element, i.e.

<parent segment="2" fractionAlong="0.5"/>





This is not possible in a node based format, but represents a logically consistent description of what the modeller
wants.



What to do?

Two options are available then for a serialisation format or API: should it try to support all of these scenarios, or try to
enforce “best practice”?

PG: I’d argue for the first approach, as it retains as much as possible of what the original reconstructor/simulator specified.
An API which enforces a policy when it encounters a non optimal morphology (e.g. moving all dendrites to connection points,
inserting new nodes) will alter the original data in perhaps unintended ways, and that information will be lost by subsequent readers.
It should be up to each parsing application to decide what to do with the extra information when it reads in a file.






            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   n
   


   
     		 	

     		
       n	

     
       	[image: -]
       	
       neuroml	
       

     
       	
       	   
       neuroml.loaders	
       

     
       	
       	   
       neuroml.utils	
       

     
       	
       	   
       neuroml.writers	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 


A


  	
      	add_all_to_document() (in module neuroml.utils)


      	AdExIaFCell (class in neuroml.nml.nml)


      	AlphaCondSynapse (class in neuroml.nml.nml)


      	AlphaCurrentSynapse (class in neuroml.nml.nml)


      	AlphaCurrSynapse (class in neuroml.nml.nml)


  

  	
      	AlphaSynapse (class in neuroml.nml.nml)


      	Annotation (class in neuroml.nml.nml)


      	append() (neuroml.nml.nml.NeuroMLDocument method)


      	append_to_element() (in module neuroml.utils)


      	ArrayMorphLoader (class in neuroml.loaders)


      	ArrayMorphWriter (class in neuroml.writers)


  





B


  	
      	Base (class in neuroml.nml.nml)


      	BaseCell (class in neuroml.nml.nml)


      	BaseCellMembPotCap (class in neuroml.nml.nml)


      	BaseConductanceBasedSynapse (class in neuroml.nml.nml)


      	BaseConductanceBasedSynapseTwo (class in neuroml.nml.nml)


      	BaseConnection (class in neuroml.nml.nml)


      	BaseConnectionNewFormat (class in neuroml.nml.nml)


      	BaseConnectionOldFormat (class in neuroml.nml.nml)


      	BaseCurrentBasedSynapse (class in neuroml.nml.nml)


      	BaseNonNegativeIntegerId (class in neuroml.nml.nml)


      	BaseProjection (class in neuroml.nml.nml)


  

  	
      	basePyNNCell (class in neuroml.nml.nml)


      	basePyNNIaFCell (class in neuroml.nml.nml)


      	basePyNNIaFCondCell (class in neuroml.nml.nml)


      	BasePynnSynapse (class in neuroml.nml.nml)


      	BaseSynapse (class in neuroml.nml.nml)


      	BaseVoltageDepSynapse (class in neuroml.nml.nml)


      	BaseWithoutId (class in neuroml.nml.nml)


      	BiophysicalProperties (class in neuroml.nml.nml)


      	BiophysicalProperties2CaPools (class in neuroml.nml.nml)


      	BlockingPlasticSynapse (class in neuroml.nml.nml)


      	BlockMechanism (class in neuroml.nml.nml)


  





C


  	
      	Case (class in neuroml.nml.nml)


      	Cell (class in neuroml.nml.nml)


      	Cell2CaPools (class in neuroml.nml.nml)


      	CellSet (class in neuroml.nml.nml)


      	ChannelDensity (class in neuroml.nml.nml)


      	ChannelDensityGHK (class in neuroml.nml.nml)


      	ChannelDensityGHK2 (class in neuroml.nml.nml)


      	ChannelDensityNernst (class in neuroml.nml.nml)


      	ChannelDensityNernstCa2 (class in neuroml.nml.nml)


      	ChannelDensityNonUniform (class in neuroml.nml.nml)


      	ChannelDensityNonUniformGHK (class in neuroml.nml.nml)


      	ChannelDensityNonUniformNernst (class in neuroml.nml.nml)


      	ChannelDensityVShift (class in neuroml.nml.nml)


  

  	
      	ChannelPopulation (class in neuroml.nml.nml)


      	ClosedState (class in neuroml.nml.nml)


      	ComponentType (class in neuroml.nml.nml)


      	CompoundInput (class in neuroml.nml.nml)


      	CompoundInputDL (class in neuroml.nml.nml)


      	ConcentrationModel_D (class in neuroml.nml.nml)


      	ConditionalDerivedVariable (class in neuroml.nml.nml)


      	Connection (class in neuroml.nml.nml)


      	ConnectionWD (class in neuroml.nml.nml)


      	Constant (class in neuroml.nml.nml)


      	ContinuousConnection (class in neuroml.nml.nml)


      	ContinuousConnectionInstance (class in neuroml.nml.nml)


      	ContinuousConnectionInstanceW (class in neuroml.nml.nml)


      	ContinuousProjection (class in neuroml.nml.nml)


  





D


  	
      	DecayingPoolConcentrationModel (class in neuroml.nml.nml)


      	DerivedVariable (class in neuroml.nml.nml)


      	DistalDetails (class in neuroml.nml.nml)


  

  	
      	distance_to() (neuroml.nml.nml.Point3DWithDiam method)


      	DoubleSynapse (class in neuroml.nml.nml)


      	Dynamics (class in neuroml.nml.nml)


  





E


  	
      	EIF_cond_alpha_isfa_ista (class in neuroml.nml.nml)


      	EIF_cond_exp_isfa_ista (class in neuroml.nml.nml)


      	ElectricalConnection (class in neuroml.nml.nml)


      	ElectricalConnectionInstance (class in neuroml.nml.nml)


      	ElectricalConnectionInstanceW (class in neuroml.nml.nml)


      	ElectricalProjection (class in neuroml.nml.nml)


      	ExpCondSynapse (class in neuroml.nml.nml)


      	ExpCurrSynapse (class in neuroml.nml.nml)


      	ExplicitInput (class in neuroml.nml.nml)


      	ExpOneSynapse (class in neuroml.nml.nml)


  

  	
      	exportHdf5() (neuroml.nml.nml.ContinuousProjection method)

      
        	(neuroml.nml.nml.ElectricalProjection method)


        	(neuroml.nml.nml.InputList method)


        	(neuroml.nml.nml.Network method)


        	(neuroml.nml.nml.Population method)


        	(neuroml.nml.nml.Projection method)


      


      	Exposure (class in neuroml.nml.nml)


      	ExpThreeSynapse (class in neuroml.nml.nml)


      	ExpTwoSynapse (class in neuroml.nml.nml)


      	ExtracellularProperties (class in neuroml.nml.nml)


      	ExtracellularPropertiesLocal (class in neuroml.nml.nml)


  





F


  	
      	FitzHughNagumo1969Cell (class in neuroml.nml.nml)


      	FitzHughNagumoCell (class in neuroml.nml.nml)


  

  	
      	FixedFactorConcentrationModel (class in neuroml.nml.nml)


      	ForwardTransition (class in neuroml.nml.nml)


  





G


  	
      	GapJunction (class in neuroml.nml.nml)


      	GateFractional (class in neuroml.nml.nml)


      	GateFractionalSubgate (class in neuroml.nml.nml)


      	GateHHInstantaneous (class in neuroml.nml.nml)


      	GateHHRates (class in neuroml.nml.nml)


      	GateHHRatesInf (class in neuroml.nml.nml)


      	GateHHRatesTau (class in neuroml.nml.nml)


      	GateHHRatesTauInf (class in neuroml.nml.nml)


      	GateHHTauInf (class in neuroml.nml.nml)


      	GateHHUndetermined (class in neuroml.nml.nml)


      	GateKS (class in neuroml.nml.nml)


      	get_actual_proximal() (neuroml.nml.nml.Cell method)


      	get_all_segments_in_group() (neuroml.nml.nml.Cell method)


      	get_by_id() (neuroml.nml.nml.Network method)

      
        	(neuroml.nml.nml.NeuroMLDocument method)


      


      	get_delay_in_ms() (neuroml.nml.nml.ConnectionWD method)


      	get_fraction_along() (neuroml.nml.nml.ExplicitInput method)

      
        	(neuroml.nml.nml.Input method)


      


      	get_ordered_segments_in_groups() (neuroml.nml.nml.Cell method)


      	get_post_cell_id() (neuroml.nml.nml.Connection method)

      
        	(neuroml.nml.nml.ConnectionWD method)


        	(neuroml.nml.nml.ContinuousConnection method)


        	(neuroml.nml.nml.ElectricalConnection method)


      


      	get_post_fraction_along() (neuroml.nml.nml.Connection method)

      
        	(neuroml.nml.nml.ConnectionWD method)


        	(neuroml.nml.nml.ContinuousConnection method)


        	(neuroml.nml.nml.ElectricalConnection method)


      


      	get_post_info() (neuroml.nml.nml.Connection method)

      
        	(neuroml.nml.nml.ConnectionWD method)


        	(neuroml.nml.nml.ContinuousConnection method)


        	(neuroml.nml.nml.ElectricalConnection method)


      


      	get_post_segment_id() (neuroml.nml.nml.Connection method)

      
        	(neuroml.nml.nml.ConnectionWD method)


        	(neuroml.nml.nml.ContinuousConnection method)


        	(neuroml.nml.nml.ElectricalConnection method)


      


  

  	
      	get_pre_cell_id() (neuroml.nml.nml.Connection method)

      
        	(neuroml.nml.nml.ConnectionWD method)


        	(neuroml.nml.nml.ContinuousConnection method)


        	(neuroml.nml.nml.ElectricalConnection method)


      


      	get_pre_fraction_along() (neuroml.nml.nml.Connection method)

      
        	(neuroml.nml.nml.ConnectionWD method)


        	(neuroml.nml.nml.ContinuousConnection method)


        	(neuroml.nml.nml.ElectricalConnection method)


      


      	get_pre_info() (neuroml.nml.nml.Connection method)

      
        	(neuroml.nml.nml.ConnectionWD method)


        	(neuroml.nml.nml.ContinuousConnection method)


        	(neuroml.nml.nml.ElectricalConnection method)


      


      	get_pre_segment_id() (neuroml.nml.nml.Connection method)

      
        	(neuroml.nml.nml.ConnectionWD method)


        	(neuroml.nml.nml.ContinuousConnection method)


        	(neuroml.nml.nml.ElectricalConnection method)


      


      	get_segment() (neuroml.nml.nml.Cell method)


      	get_segment_group() (neuroml.nml.nml.Cell method)


      	get_segment_groups_by_substring() (neuroml.nml.nml.Cell method)


      	get_segment_id() (neuroml.nml.nml.ExplicitInput method)

      
        	(neuroml.nml.nml.Input method)


      


      	get_segment_ids_vs_segments() (neuroml.nml.nml.Cell method)


      	get_segment_length() (neuroml.nml.nml.Cell method)


      	get_segment_surface_area() (neuroml.nml.nml.Cell method)


      	get_segment_volume() (neuroml.nml.nml.Cell method)


      	get_segments_by_substring() (neuroml.nml.nml.Cell method)


      	get_size() (neuroml.nml.nml.Population method)


      	get_summary() (in module neuroml.utils)


      	get_target_cell_id() (neuroml.nml.nml.ExplicitInput method)

      
        	(neuroml.nml.nml.Input method)


      


      	get_target_population() (neuroml.nml.nml.ExplicitInput method)


      	get_weight() (neuroml.nml.nml.ContinuousConnectionInstanceW method)

      
        	(neuroml.nml.nml.ElectricalConnectionInstanceW method)


        	(neuroml.nml.nml.InputW method)


      


      	GradedSynapse (class in neuroml.nml.nml)


      	GridLayout (class in neuroml.nml.nml)


  





H


  	
      	has_segment_fraction_info() (in module neuroml.utils)


      	HH_cond_exp (class in neuroml.nml.nml)


  

  	
      	HHRate (class in neuroml.nml.nml)


      	HHTime (class in neuroml.nml.nml)


      	HHVariable (class in neuroml.nml.nml)


  





I


  	
      	IafCell (class in neuroml.nml.nml)


      	IafRefCell (class in neuroml.nml.nml)


      	IafTauCell (class in neuroml.nml.nml)


      	IafTauRefCell (class in neuroml.nml.nml)


      	IF_cond_alpha (class in neuroml.nml.nml)


      	IF_cond_exp (class in neuroml.nml.nml)


      	IF_curr_alpha (class in neuroml.nml.nml)


      	IF_curr_exp (class in neuroml.nml.nml)


      	Include (class in neuroml.nml.nml)


      	IncludeType (class in neuroml.nml.nml)


      	InhomogeneousParameter (class in neuroml.nml.nml)


      	InhomogeneousValue (class in neuroml.nml.nml)


      	InitMembPotential (class in neuroml.nml.nml)


      	Input (class in neuroml.nml.nml)


  

  	
      	InputList (class in neuroml.nml.nml)


      	InputW (class in neuroml.nml.nml)


      	Instance (class in neuroml.nml.nml)


      	InstanceRequirement (class in neuroml.nml.nml)


      	IntracellularProperties (class in neuroml.nml.nml)


      	IntracellularProperties2CaPools (class in neuroml.nml.nml)


      	IonChannel (class in neuroml.nml.nml)


      	IonChannelHH (class in neuroml.nml.nml)


      	IonChannelKS (class in neuroml.nml.nml)


      	IonChannelScalable (class in neuroml.nml.nml)


      	IonChannelVShift (class in neuroml.nml.nml)


      	is_valid_neuroml2() (in module neuroml.utils)


      	Izhikevich2007Cell (class in neuroml.nml.nml)


      	IzhikevichCell (class in neuroml.nml.nml)


  





J


  	
      	JSONLoader (class in neuroml.loaders)


  

  	
      	JSONWriter (class in neuroml.writers)


  





L


  	
      	Layout (class in neuroml.nml.nml)


      	LEMS_Property (class in neuroml.nml.nml)


      	length (neuroml.nml.nml.Segment property)


      	LinearGradedSynapse (class in neuroml.nml.nml)


      	load() (neuroml.loaders.ArrayMorphLoader class method)

      
        	(neuroml.loaders.JSONLoader class method)


        	(neuroml.loaders.NeuroMLHdf5Loader class method)


        	(neuroml.loaders.NeuroMLLoader class method)


      


  

  	
      	load_from_mongodb() (neuroml.loaders.JSONLoader class method)


      	load_swc_single() (neuroml.loaders.SWCLoader class method)


      	Location (class in neuroml.nml.nml)


  





M


  	
      	main() (in module neuroml.utils)


      	Member (class in neuroml.nml.nml)


      	MembraneProperties (class in neuroml.nml.nml)


      	MembraneProperties2CaPools (class in neuroml.nml.nml)


  

  	
      	
    module

      
        	neuroml.loaders


        	neuroml.utils


        	neuroml.writers


      


      	Morphology (class in neuroml.nml.nml)


  





N


  	
      	NamedDimensionalType (class in neuroml.nml.nml)


      	NamedDimensionalVariable (class in neuroml.nml.nml)


      	Network (class in neuroml.nml.nml)


      	
    neuroml.loaders

      
        	module


      


      	
    neuroml.utils

      
        	module


      


  

  	
      	
    neuroml.writers

      
        	module


      


      	NeuroMLDocument (class in neuroml.nml.nml)


      	NeuroMLHdf5Loader (class in neuroml.loaders)


      	NeuroMLHdf5Writer (class in neuroml.writers)


      	NeuroMLLoader (class in neuroml.loaders)


      	NeuroMLWriter (class in neuroml.writers)


      	num_segments (neuroml.nml.nml.Morphology property)


  





O


  	
      	OpenState (class in neuroml.nml.nml)


  





P


  	
      	Parameter (class in neuroml.nml.nml)


      	Path (class in neuroml.nml.nml)


      	PinskyRinzelCA3Cell (class in neuroml.nml.nml)


      	PlasticityMechanism (class in neuroml.nml.nml)


      	Point3DWithDiam (class in neuroml.nml.nml)


      	PoissonFiringSynapse (class in neuroml.nml.nml)


      	Population (class in neuroml.nml.nml)


  

  	
      	print_() (in module neuroml.loaders)


      	print_summary() (in module neuroml.utils)


      	Projection (class in neuroml.nml.nml)


      	Property (class in neuroml.nml.nml)


      	ProximalDetails (class in neuroml.nml.nml)


      	PulseGenerator (class in neuroml.nml.nml)


      	PulseGeneratorDL (class in neuroml.nml.nml)


  





Q


  	
      	Q10ConductanceScaling (class in neuroml.nml.nml)


  

  	
      	Q10Settings (class in neuroml.nml.nml)


  





R


  	
      	RampGenerator (class in neuroml.nml.nml)


      	RampGeneratorDL (class in neuroml.nml.nml)


      	RandomLayout (class in neuroml.nml.nml)


      	ReactionScheme (class in neuroml.nml.nml)


      	read_neuroml2_file() (in module neuroml.loaders)


  

  	
      	read_neuroml2_string() (in module neuroml.loaders)


      	Region (class in neuroml.nml.nml)


      	Requirement (class in neuroml.nml.nml)


      	Resistivity (class in neuroml.nml.nml)


      	ReverseTransition (class in neuroml.nml.nml)


  





S


  	
      	Segment (class in neuroml.nml.nml)


      	SegmentEndPoint (class in neuroml.nml.nml)


      	SegmentGroup (class in neuroml.nml.nml)


      	SegmentParent (class in neuroml.nml.nml)


      	SilentSynapse (class in neuroml.nml.nml)


      	SineGenerator (class in neuroml.nml.nml)


      	SineGeneratorDL (class in neuroml.nml.nml)


      	Space (class in neuroml.nml.nml)


      	SpaceStructure (class in neuroml.nml.nml)


      	Species (class in neuroml.nml.nml)


      	SpecificCapacitance (class in neuroml.nml.nml)


      	Spike (class in neuroml.nml.nml)


      	SpikeArray (class in neuroml.nml.nml)


  

  	
      	SpikeGenerator (class in neuroml.nml.nml)


      	SpikeGeneratorPoisson (class in neuroml.nml.nml)


      	SpikeGeneratorRandom (class in neuroml.nml.nml)


      	SpikeGeneratorRefPoisson (class in neuroml.nml.nml)


      	SpikeSourcePoisson (class in neuroml.nml.nml)


      	SpikeThresh (class in neuroml.nml.nml)


      	Standalone (class in neuroml.nml.nml)


      	StateVariable (class in neuroml.nml.nml)


      	SubTree (class in neuroml.nml.nml)


      	summary() (neuroml.nml.nml.Cell method)

      
        	(neuroml.nml.nml.NeuroMLDocument method)


      


      	surface_area (neuroml.nml.nml.Segment property)


      	SWCLoader (class in neuroml.loaders)


      	SynapticConnection (class in neuroml.nml.nml)


  





T


  	
      	TauInfTransition (class in neuroml.nml.nml)


      	TimeDerivative (class in neuroml.nml.nml)


  

  	
      	TimedSynapticInput (class in neuroml.nml.nml)


      	TransientPoissonFiringSynapse (class in neuroml.nml.nml)


  





U


  	
      	UnstructuredLayout (class in neuroml.nml.nml)


  





V


  	
      	validate_neuroml2() (in module neuroml.utils)


      	validate_Nml2Quantity_resistivity() (neuroml.nml.nml.Resistivity method)


      	validate_Nml2Quantity_resistivity_patterns_ (neuroml.nml.nml.Resistivity attribute)


  

  	
      	VariableParameter (class in neuroml.nml.nml)


      	VoltageClamp (class in neuroml.nml.nml)


      	VoltageClampTriple (class in neuroml.nml.nml)


      	volume (neuroml.nml.nml.Segment property)


  





W


  	
      	write() (neuroml.writers.ArrayMorphWriter class method)

      
        	(neuroml.writers.JSONWriter class method)


        	(neuroml.writers.NeuroMLHdf5Writer class method)


        	(neuroml.writers.NeuroMLWriter class method)


      


  

  	
      	write_to_mongodb() (neuroml.writers.JSONWriter class method)


  







            

          

      

      

    

  _static/neuroml_logo.png
~~§%{NeuroNL]





_static/plus.png





_static/file.png





_static/minus.png





nav.xhtml

    
      Table of Contents


      
        		
          libNeuroML: documentation
        


        		
          User guide
          
            		
              Introduction
              
                		
                  NeuroML
                


                		
                  Serialisations
                


              


            


            		
              Installation
              
                		
                  Using Pip
                


                		
                  On Fedora based systems
                


                		
                  Install from source
                


                		
                  Run an example
                


                		
                  Unit tests
                


              


            


            		
              API documentation
              
                		
                  nml Module (NeuroML Core classes)
                


                		
                  loaders Module
                


                		
                  writers Module
                


                		
                  utils Module
                


                		
                  arraymorph Module
                


              


            


            		
              Examples
              
                		
                  Creating a NeuroML morphology
                


                		
                  Loading and modifying a file
                


                		
                  Building a network
                


                		
                  Building a 3D network
                


                		
                  Ion channels
                


                		
                  PyNN models
                


                		
                  Synapses
                


                		
                  Working with JSON serialization
                


                		
                  Working with arraymorphs
                


                		
                  Working with Izhikevich Cells
                


              


            


            		
              References
            


          


        


        		
          Contributing
          
            		
              How to contribute
              
                		
                  Setting up
                


                		
                  Sync with upstream
                


                		
                  Working locally on a dedicated branch
                


                		
                  Continuous integration
                


                		
                  Release process
                


              


            


            		
              Regenerating documentation
            


            		
              Implementation of XML bindings for libNeuroML
              
                		
                  Correct naming conventions
                


                		
                  Addition of helper methods
                


                		
                  Generation of bindings
                


              


            


            		
              Multicompartmental Python API Meeting
              
                		
                  Organisation
                


                		
                  Minutes
                


              


            


            		
              Nodes, Segments and Sections
              
                		
                  Nodes
                


                		
                  Segments
                


                		
                  Sections
                


                		
                  Issues
                


              


            


          


        


      


    
  

