
libNeuroML Documentation
Release 0.3.1

libNeuroML authors and contributors

Dec 17, 2021

CONTENTS

1 User guide 3
1.1 Introduction . 3
1.2 Installation . 3
1.3 API documentation . 5
1.4 Examples . 68
1.5 References . 83

2 Contributing 85
2.1 How to contribute . 85
2.2 Regenerating documentation . 87
2.3 Implementation of XML bindings for libNeuroML . 87
2.4 Multicompartmental Python API Meeting . 88
2.5 Nodes, Segments and Sections . 91

3 Indices and tables 95

Bibliography 97

Python Module Index 99

Index 101

i

ii

libNeuroML Documentation, Release 0.3.1

Welcome to the libNeuroML documentation. Here you will find information on installing, using, and contributing
to libNeuroML. For more information on NeuroML standard, other tools in the NeuroML eco-system, the NeuroML
community and how to get in touch with us, please see the documentation at https://docs.neuroml.org.

CONTENTS 1

https://docs.neuroml.org

libNeuroML Documentation, Release 0.3.1

2 CONTENTS

CHAPTER

ONE

USER GUIDE

1.1 Introduction

This package provides Python libNeuroML, for working with neuronal models specified in NeuroML 2.

Warning: libNeuroML targets NeuroML v2.0

libNeuroML targets NeuroML v2.0, which is described in Cannon et al, 2014). NeuroML v1.8.1 (Gleeson et al.
2010) is now deprecated and not supported by libNeuroML.

For a detailed description of libNeuroML see Vella et al. [VCC+14]. Please cite the paper if you use libNeuroML.

1.1.1 NeuroML

NeuroML provides an object model for describing neuronal morphologies, ion channels, synapses and 3D network
structure. For more information on NeuroML 2 and LEMS please see the NeuroML documentation.

1.1.2 Serialisations

The XML serialisation will be the “natural” serialisation and will follow closely the NeuroML object model. The
format of the XML will be specified by the XML Schema definition (XSD file).

Other serialisations have been developed (HDF5, JSON, SWC). Please see Vella et al. [VCC+14] for more details.

1.2 Installation

1.2.1 Using Pip

On most systems with a Python installation, libNeuroML can be installed using the default Python package manager,
Pip:

pip install libNeuroML

It is recommended to use a virtual environment when installing Python packages using pip to prevent these from
conflicting with other system libraries.

This will support the default XML serialization. To install all of requirements to include the other serialisations, use

3

http://docs.neuroml.org
http://docs.neuroml.org
http://journal.frontiersin.org/Journal/10.3389/fninf.2014.00079/abstract
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000815
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000815
https://docs.neuroml.org/Userdocs/NeuroMLv2.html
https://docs.python.org/3/tutorial/venv.html

libNeuroML Documentation, Release 0.3.1

On Ubuntu based systems
sudo apt-get install libhdf5-dev
pip install libNeuroML[full]

The apt line is required at time of writing because PyTables’ wheels for python 3.7 depend on the system libhdf5.

1.2.2 On Fedora based systems

On Fedora Linux systems, the NeuroFedora community provides libNeuroML in the standard Fedora repos and can be
installed using the following commands:

sudo dnf install python3-libNeuroML

1.2.3 Install from source

You can clone the GitHub repository and also build libNeuroML from the sources. For this, you will need git:

git clone git://github.com/NeuralEnsemble/libNeuroML.git
cd libNeuroML

More details about the git repository and making your own branch/fork are here. To build and install libNeuroML, you
can use the standard install method for Python packages (preferably in a virtual environment):

python setup.py install

To use the latest development version of libNeuroML, switch to the development branch:

git checkout development
sudo python setup.py install

1.2.4 Run an example

Some sample scripts are included in neuroml/examples, e.g. :

cd neuroml/examples
python build_network.py

The standard examples can also be found Examples.

1.2.5 Unit tests

To run unit tests cd to the directory neuroml/test and use the Python unittest module discover method:

cd neuroml/test/
python -m unittest discover

If all tests passed correctly, your output should look something like this:

4 Chapter 1. User guide

https://getfedora.org
https://neuro.fedoraproject.org
https://src.fedoraproject.org/rpms/python-libNeuroML
https://github.com/NeuralEnsemble/libNeuroML/
https://git-scm.com
how_to_contribute.html

libNeuroML Documentation, Release 0.3.1

.......
--
Ran 55 tests in 40.1s

OK

You can also use PyTest to run tests.

pip install pytest
pytest -v --strict -W all

To ignore some tests, like the MongoDB test which requires a MongoDB setup, run:

pytest -v -k "not mongodb" --strict -W all

1.3 API documentation

The libNeuroML API includes the core NeuroML classes and various utilities. You can find information on these in
the pages below.

1.3.1 nml Module (NeuroML Core classes)

These NeuroML core classes are Python representations of the Component Types defined in the NeuroML standard .
These can be used to build NeuroML models in Python, and these models can then be exported to the standard XML
NeuroML representation. These core classes also contain some utility functions to make it easier for users to carry out
common tasks.

Each NeuroML Component Type is represented here as a Python class. Due to implementation limitations, whereas
NeuroML Component Types use lower camel case naming, the Python classes here use upper camel case naming. So,
for example, the adExIaFCell Component Type in the NeuroML schema becomes the AdExIaFCell class here, and
expTwoSynapse becomes the ExpTwoSynapse class.

The child and children elements that NeuroML Component Types can have are represented in the Python classes
as variables. The variable names, to distinguish them from class names, use snake case. So for example, the cell
NeuroML Component Type has a corresponding Cell Python class here. The biophysicalProperties child Com-
ponent Type in cell is represented as the biophysical_properties list variable in the Cell Python class. The
class signatures list all the child/children elements and text fields that the corresponding Component Type possesses.
To again use the Cell class as an example, the construction signature is this:

class neuroml.nml.nml.Cell(neuro_lex_id=None, id=None, metaid=None, notes=None,␣
→˓properties=None, annotation=None, morphology_attr=None, biophysical_properties_
→˓attr=None, morphology=None, biophysical_properties=None, extensiontype_=None, **kwargs_
→˓)

As can be seen here, it includes both the biophysical_properties and morphology child elements as variables.

Please see the examples in the NeuroML documentation to see usage examples of libNeuroML. Please also note that
this module is also included in the top level of the neuroml package, so you can use these classes by importing neuroml:

from neuroml import AdExIaFCell

1.3. API documentation 5

https://docs.neuroml.org/Userdocs/NeuroMLv2.html
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Snake_case
https://docs.neuroml.org/Userdocs/GettingStarted.html

libNeuroML Documentation, Release 0.3.1

List of Component classes

This documentation is auto-generated from the NeuroML schema. In case of issues, please refer to the schema docu-
mentation for clarifications. If the schema documentation does not resolve the issue, please contact us.

AdExIaFCell

class neuroml.nml.nml.AdExIaFCell(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, C=None, g_l=None, EL=None,
reset=None, VT=None, thresh=None, del_t=None, tauw=None,
refract=None, a=None, b=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseCellMembPotCap

AdExIaFCell – Model based on Brette R and Gerstner W (2005) Adaptive Exponential Integrate-and-Fire Model
as an Effective Description of Neuronal Activity. J Neurophysiol 94:3637-3642

Parameters

• gL (conductance) –

• EL (voltage) –

• VT (voltage) –

• thresh (voltage) –

• reset (voltage) –

• delT (voltage) –

• tauw (time) –

• refract (time) –

• a (conductance) –

• b (current) –

• C (capacitance) – Total capacitance of the cell membrane

AlphaCondSynapse

class neuroml.nml.nml.AlphaCondSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, tau_syn=None, e_rev=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BasePynnSynapse

AlphaCondSynapse – Alpha synapse: rise time and decay time are both tau_syn. Conductance based synapse.

Parameters

• e_rev (none) –

• tau_syn (none) –

6 Chapter 1. User guide

https://docs.neuroml.org/Userdocs/NeuroMLv2.html
https://docs.neuroml.org/NeuroMLOrg/CommunicationChannels.html

libNeuroML Documentation, Release 0.3.1

AlphaCurrSynapse

class neuroml.nml.nml.AlphaCurrSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, tau_syn=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BasePynnSynapse

AlphaCurrSynapse – Alpha synapse: rise time and decay time are both tau_syn. Current based synapse.

Parameters tau_syn (none) –

AlphaCurrentSynapse

class neuroml.nml.nml.AlphaCurrentSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, tau=None, ibase=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseCurrentBasedSynapse

AlphaCurrentSynapse – Alpha current synapse: rise time and decay time are both tau.

Parameters

• tau (time) – Time course for rise and decay

• ibase (current) – Baseline current increase after receiving a spike

AlphaSynapse

class neuroml.nml.nml.AlphaSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, gbase=None, erev=None,
tau=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseConductanceBasedSynapse

AlphaSynapse – Ohmic synapse model where rise time and decay time are both tau. Max conductance reached
during this time (assuming zero conductance before) is gbase * weight.

Parameters

• tau (time) – Time course of rise/decay

• gbase (conductance) – Baseline conductance, generally the maximum conductance fol-
lowing a single spike

• erev (voltage) – Reversal potential of the synapse

Annotation

class neuroml.nml.nml.Annotation(anytypeobjs_=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

Annotation – A structured annotation containing metadata, specifically RDF or property elements

1.3. API documentation 7

libNeuroML Documentation, Release 0.3.1

Base

class neuroml.nml.nml.Base(neuro_lex_id=None, id=None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.BaseWithoutId

Base – Anything which can have a unique (within its parent) id of the form NmlId (spaceless combination of
letters, numbers and underscore).

BaseCell

class neuroml.nml.nml.BaseCell(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

BaseCell – Base type of any cell (e. g. point neuron like izhikevich2007Cell , or a morphologically detailed
Cell with segment s) which can be used in a population

BaseCellMembPotCap

class neuroml.nml.nml.BaseCellMembPotCap(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, C=None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseCell

BaseCellMembPotCap – Any cell with a membrane potential v with voltage units and a membrane capacitance
C. Also defines exposed value iSyn for current due to external synapses and iMemb for total transmembrane
current (usually channel currents plus iSyn)

Parameters C (capacitance) – Total capacitance of the cell membrane

BaseConductanceBasedSynapse

class neuroml.nml.nml.BaseConductanceBasedSynapse(neuro_lex_id=None, id=None, metaid=None,
notes=None, properties=None, annotation=None,
gbase=None, erev=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseVoltageDepSynapse

BaseConductanceBasedSynapse – Synapse model which exposes a conductance g in addition to producing a
current. Not necessarily ohmic!! cno_0000027

Parameters

• gbase (conductance) – Baseline conductance, generally the maximum conductance fol-
lowing a single spike

• erev (voltage) – Reversal potential of the synapse

8 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

BaseConductanceBasedSynapseTwo

class neuroml.nml.nml.BaseConductanceBasedSynapseTwo(neuro_lex_id=None, id=None, metaid=None,
notes=None, properties=None,
annotation=None, gbase1=None,
gbase2=None, erev=None,
extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.BaseVoltageDepSynapse

BaseConductanceBasedSynapseTwo – Synapse model suited for a sum of two expTwoSynapses which exposes
a conductance g in addition to producing a current. Not necessarily ohmic!! cno_0000027

Parameters

• gbase1 (conductance) – Baseline conductance 1

• gbase2 (conductance) – Baseline conductance 2

• erev (voltage) – Reversal potential of the synapse

BaseConnection

class neuroml.nml.nml.BaseConnection(neuro_lex_id=None, id=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseNonNegativeIntegerId

BaseConnection – Base of all synaptic connections (chemical/electrical/analog, etc.) inside projections

BaseConnectionNewFormat

class neuroml.nml.nml.BaseConnectionNewFormat(neuro_lex_id=None, id=None, pre_cell=None,
pre_segment='0', pre_fraction_along='0.5',
post_cell=None, post_segment='0',
post_fraction_along='0.5', extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseConnection

BaseConnectionNewFormat – Base of all synaptic connections with preCell, postSegment, etc. See BaseCon-
nectionOldFormat

BaseConnectionOldFormat

class neuroml.nml.nml.BaseConnectionOldFormat(neuro_lex_id=None, id=None, pre_cell_id=None,
pre_segment_id='0', pre_fraction_along='0.5',
post_cell_id=None, post_segment_id='0',
post_fraction_along='0.5', extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseConnection

BaseConnectionOldFormat – Base of all synaptic connections with preCellId, postSegmentId, etc. Note: this is
not the best name for these attributes, since Id is superfluous, hence BaseConnectionNewFormat

1.3. API documentation 9

libNeuroML Documentation, Release 0.3.1

BaseCurrentBasedSynapse

class neuroml.nml.nml.BaseCurrentBasedSynapse(neuro_lex_id=None, id=None, metaid=None,
notes=None, properties=None, annotation=None,
extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.BaseSynapse

BaseCurrentBasedSynapse – Synapse model which produces a synaptic current.

BaseNonNegativeIntegerId

class neuroml.nml.nml.BaseNonNegativeIntegerId(neuro_lex_id=None, id=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseWithoutId

BaseNonNegativeIntegerId – Anything which can have a unique (within its parent) id, which must be an integer
zero or greater.

BaseProjection

class neuroml.nml.nml.BaseProjection(neuro_lex_id=None, id=None, presynaptic_population=None,
postsynaptic_population=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

BaseProjection – Base for projection (set of synaptic connections) between two populations

BasePynnSynapse

class neuroml.nml.nml.BasePynnSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, tau_syn=None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseSynapse

BasePynnSynapse – Base type for all PyNN synapses. Note, the current I produced is dimensionless, but it
requires a membrane potential v with dimension voltage

Parameters tau_syn (none) –

BaseSynapse

class neuroml.nml.nml.BaseSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

BaseSynapse – Base type for all synapses, i. e. ComponentTypes which produce a current (dimension current)
and change Dynamics in response to an incoming event. cno_0000009

10 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

BaseVoltageDepSynapse

class neuroml.nml.nml.BaseVoltageDepSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseSynapse

BaseVoltageDepSynapse – Base type for synapses with a dependence on membrane potential

BaseWithoutId

class neuroml.nml.nml.BaseWithoutId(neuro_lex_id=None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

BaseWithoutId – Base element without ID specified yet, e.g. for an element with a particular requirement on its
id which does not comply with NmlId (e.g. Segment needs nonNegativeInteger).

add(obj=None, hint=None, force=False)
Generic function to allow easy addition of a new member to a NeuroML object.

Without arguments, when obj=None, it simply calls the info() method to provide the list of valid member
types for the NeuroML class.

Use info(show_contents=True) to see the valid members of this class, and their current contents.

Parameters

• obj (any NeuroML Type defined by the API) – object member to add

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

get_members()
Get member data items, also from ancestors.

This function is required because generateDS does not include inherited members in the mem-
ber_data_items list for a derived class. So, for example, while IonChannelHH has gate_hh_rates which
it inherits from IonChannel, IonChannelHH’s member_data_items_ is empty. It relies on the IonChannel
classes’ member_data_items_ list.

Returns list of members, including ones inherited from ancestors.

info(show_contents=False)
A helper function to get a list of members of this class.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

1.3. API documentation 11

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation, Release 0.3.1

Parameters show_contents (bool) – also prints out the contents of the members

Returns the string (for testing purposes)

BiophysicalProperties

class neuroml.nml.nml.BiophysicalProperties(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None,
membrane_properties=None,
intracellular_properties=None,
extracellular_properties=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Standalone

BiophysicalProperties – The biophysical properties of the cell , including the membraneProperties and the
intracellularProperties

BiophysicalProperties2CaPools

class neuroml.nml.nml.BiophysicalProperties2CaPools(neuro_lex_id=None, id=None, metaid=None,
notes=None, properties=None,
annotation=None,
membrane_properties2_ca_pools=None,
intracellular_properties2_ca_pools=None,
extracellular_properties=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

BiophysicalProperties2CaPools – The biophysical properties of the cell , including the membraneProper-
ties2CaPools and the intracellularProperties2CaPools for a cell with two Ca pools

BlockMechanism

class neuroml.nml.nml.BlockMechanism(type=None, species=None, block_concentration=None,
scaling_conc=None, scaling_volt=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

BlockingPlasticSynapse

class neuroml.nml.nml.BlockingPlasticSynapse(neuro_lex_id=None, id=None, metaid=None,
notes=None, properties=None, annotation=None,
gbase=None, erev=None, tau_decay=None,
tau_rise=None, plasticity_mechanism=None,
block_mechanism=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.ExpTwoSynapse

BlockingPlasticSynapse – Biexponential synapse that allows for optional block and plasticity mechanisms, which
can be expressed as child elements.

Parameters

12 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

• tauRise (time) –

• tauDecay (time) –

• gbase (conductance) – Baseline conductance, generally the maximum conductance fol-
lowing a single spike

• erev (voltage) – Reversal potential of the synapse

Case

class neuroml.nml.nml.Case(condition=None, value=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

Cell

class neuroml.nml.nml.Cell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None,
annotation=None, morphology_attr=None, biophysical_properties_attr=None,
morphology=None, biophysical_properties=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseCell

Cell – Cell with segment s specified in a morphology element along with details on its biophysicalProperties
. NOTE: this can only be correctly simulated using jLEMS when there is a single segment in the cell, and v of
this cell represents the membrane potential in that isopotential segment.

get_actual_proximal(segment_id)
Get the proximal point of a segment.

Get the proximal point of a segment, even the proximal field is None and so the proximal point is on the
parent (at a point set by fraction_along).

Parameters segment_id – ID of segment

Returns proximal point

get_all_segments_in_group(segment_group, assume_all_means_all=True)
Get all the segments in a segment group of the cell.

Parameters

• segment_group – segment group to get all segments of

• assume_all_means_all – return all segments if the segment group wasn’t explicitly de-
fined

Todo check docstring

Returns list of segments

Raises Exception – if no segment group is found in the cell.

get_ordered_segments_in_groups(group_list, check_parentage=False,
include_cumulative_lengths=False, include_path_lengths=False,
path_length_metric='Path Length from root')

Get ordered list of segments in specified groups

Parameters

• group_list – list of groups to get segments from

1.3. API documentation 13

libNeuroML Documentation, Release 0.3.1

• check_parentage – verify parentage

• include_commulative_lengths – also include cummulative lengths

• include_path_lengths – also include path lengths

• path_length_metric –

Returns dictionary of segments with additional information depending on what parameters were
used:

Raises Exception if check_parentage is True and parentage cannot be verified

get_segment(segment_id)
Get segment object by its id

Parameters segment_id – ID of segment

Returns segment

Raises Exception – if the segment is not found in the cell

get_segment_group(sg_id)
Return the SegmentGroup object for the specified segment group id.

Parameters sg_id (str) – id of segment group to find

Returns SegmentGroup object of specified ID

Raises Exception – if segment group is not found in cell

get_segment_groups_by_substring(substring)
Get a dictionary of segment group IDs and the segment groups matching the specified substring

Parameters substring (str) – substring to match

Returns dictionary with segment group ID as key, and segment group as value

Raises Exception – if no segment groups are not found in cell

get_segment_ids_vs_segments()
Get a dictionary of segment IDs and the segments in the cell.

Returns dictionary with segment ID as key, and segment as value

get_segment_length(segment_id)
Get the length of the segment.

Parameters segment_id – ID of segment

Returns length of segment

get_segment_surface_area(segment_id)
Get the surface area of the segment.

Parameters segment_id – ID of the segment

Returns surface area of segment

get_segment_volume(segment_id)
Get volume of segment

Parameters segment_id – ID of the segment

Returns volume of the segment

get_segments_by_substring(substring)
Get a dictionary of segment IDs and the segment matching the specified substring

14 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

Parameters substring (str) – substring to match

Returns dictionary with segment ID as key, and segment as value

Raises Exception – if no segments are found

summary()
Print cell summary.

Cell2CaPools

class neuroml.nml.nml.Cell2CaPools(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, morphology_attr=None,
biophysical_properties_attr=None, morphology=None,
biophysical_properties=None,
biophysical_properties2_ca_pools=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Cell

Cell2CaPools – Variant of cell with two independent Ca2+ pools. Cell with segment s specified in a morphology
element along with details on its biophysicalProperties . NOTE: this can only be correctly simulated using
jLEMS when there is a single segment in the cell, and v of this cell represents the membrane potential in that
isopotential segment.

CellSet

class neuroml.nml.nml.CellSet(neuro_lex_id=None, id=None, select=None, anytypeobjs_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

ChannelDensity

class neuroml.nml.nml.ChannelDensity(neuro_lex_id=None, id=None, ion_channel=None,
cond_density=None, erev=None, segment_groups='all',
segments=None, ion=None, variable_parameters=None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

ChannelDensity – Specifies a time varying ohmic conductance density, gDensity, which is distributed on an area
of the cell (specified in membraneProperties) with fixed reversal potential erev producing a current density
iDensity

Parameters

• erev (voltage) – The reversal potential of the current produced

• condDensity (conductanceDensity) –

1.3. API documentation 15

libNeuroML Documentation, Release 0.3.1

ChannelDensityGHK

class neuroml.nml.nml.ChannelDensityGHK(neuro_lex_id=None, id=None, ion_channel=None,
permeability=None, segment_groups='all', segments=None,
ion=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

ChannelDensityGHK – Specifies a time varying conductance density, gDensity, which is distributed on an area
of the cell, producing a current density iDensity and whose reversal potential is calculated from the Goldman
Hodgkin Katz equation. Hard coded for Ca only! See https://github.com/OpenSourceBrain/ghk-nernst.

Parameters permeability (permeability) –

ChannelDensityGHK2

class neuroml.nml.nml.ChannelDensityGHK2(neuro_lex_id=None, id=None, ion_channel=None,
cond_density=None, segment_groups='all', segments=None,
ion=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

ChannelDensityGHK2 – Time varying conductance density, gDensity, which is distributed on an area of the cell,
producing a current density iDensity. Modified version of Jaffe et al. 1994 (used also in Lawrence et al. 2006
). See https://github.com/OpenSourceBrain/ghk-nernst.

Parameters condDensity (conductanceDensity) –

ChannelDensityNernst

class neuroml.nml.nml.ChannelDensityNernst(neuro_lex_id=None, id=None, ion_channel=None,
cond_density=None, segment_groups='all', segments=None,
ion=None, variable_parameters=None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

ChannelDensityNernst – Specifies a time varying conductance density, gDensity, which is distributed on an
area of the cell, producing a current density iDensity and whose reversal potential is calculated from the Nernst
equation. Hard coded for Ca only! See https://github.com/OpenSourceBrain/ghk-nernst.

Parameters condDensity (conductanceDensity) –

ChannelDensityNernstCa2

class neuroml.nml.nml.ChannelDensityNernstCa2(neuro_lex_id=None, id=None, ion_channel=None,
cond_density=None, segment_groups='all',
segments=None, ion=None, variable_parameters=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.ChannelDensityNernst

ChannelDensityNernstCa2 – This component is similar to the original component type channelDensityNernst
but it is changed in order to have a reversal potential that depends on a second independent Ca++ pool (ca2).
See https://github.com/OpenSourceBrain/ghk-nernst.

Parameters condDensity (conductanceDensity) –

16 Chapter 1. User guide

https://github.com/OpenSourceBrain/ghk-nernst
https://github.com/OpenSourceBrain/ghk-nernst
https://github.com/OpenSourceBrain/ghk-nernst
https://github.com/OpenSourceBrain/ghk-nernst

libNeuroML Documentation, Release 0.3.1

ChannelDensityNonUniform

class neuroml.nml.nml.ChannelDensityNonUniform(neuro_lex_id=None, id=None, ion_channel=None,
erev=None, ion=None, variable_parameters=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

ChannelDensityNonUniform – Specifies a time varying ohmic conductance density, which is distributed on a
region of the cell. The conductance density of the channel is not uniform, but is set using the variableParameter .
Note, there is no dynamical description of this in LEMS yet, as this type only makes sense for multicompartmental
cells. A ComponentType for this needs to be present to enable export of NeuroML 2 multicompartmental cells
via LEMS/jNeuroML to NEURON

Parameters erev (voltage) – The reversal potential of the current produced

ChannelDensityNonUniformGHK

class neuroml.nml.nml.ChannelDensityNonUniformGHK(neuro_lex_id=None, id=None, ion_channel=None,
ion=None, variable_parameters=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

ChannelDensityNonUniformGHK – Specifies a time varying conductance density, which is distributed on a
region of the cell, and whose current is calculated from the Goldman-Hodgkin-Katz equation. Hard coded for
Ca only!. The conductance density of the channel is not uniform, but is set using the variableParameter . Note,
there is no dynamical description of this in LEMS yet, as this type only makes sense for multicompartmental
cells. A ComponentType for this needs to be present to enable export of NeuroML 2 multicompartmental cells
via LEMS/jNeuroML to NEURON

ChannelDensityNonUniformNernst

class neuroml.nml.nml.ChannelDensityNonUniformNernst(neuro_lex_id=None, id=None,
ion_channel=None, ion=None,
variable_parameters=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

ChannelDensityNonUniformNernst – Specifies a time varying conductance density, which is distributed on a
region of the cell, and whose reversal potential is calculated from the Nernst equation. Hard coded for Ca only!.
The conductance density of the channel is not uniform, but is set using the variableParameter . Note, there
is no dynamical description of this in LEMS yet, as this type only makes sense for multicompartmental cells.
A ComponentType for this needs to be present to enable export of NeuroML 2 multicompartmental cells via
LEMS/jNeuroML to NEURON

1.3. API documentation 17

libNeuroML Documentation, Release 0.3.1

ChannelDensityVShift

class neuroml.nml.nml.ChannelDensityVShift(neuro_lex_id=None, id=None, ion_channel=None,
cond_density=None, erev=None, segment_groups='all',
segments=None, ion=None, variable_parameters=None,
v_shift=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.ChannelDensity

ChannelDensityVShift – Same as channelDensity , but with a vShift parameter to change voltage activation of
gates. The exact usage of vShift in expressions for rates is determined by the individual gates.

Parameters

• vShift (voltage) –

• erev (voltage) – The reversal potential of the current produced

• condDensity (conductanceDensity) –

ChannelPopulation

class neuroml.nml.nml.ChannelPopulation(neuro_lex_id=None, id=None, ion_channel=None,
number=None, erev=None, segment_groups='all',
segments=None, ion=None, variable_parameters=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

ChannelPopulation – Population of a number of ohmic ion channels. These each produce a conductance chan-
nelg across a reversal potential erev, giving a total current i. Note that active membrane currents are more
frequently specified as a density over an area of the cell using channelDensity

Parameters

• number (none) – The number of channels present. This will be multiplied by the time vary-
ing conductance of the individual ion channel (which extends baseIonChannel) to produce
the total conductance

• erev (voltage) – The reversal potential of the current produced

ClosedState

class neuroml.nml.nml.ClosedState(neuro_lex_id=None, id=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.Base

ClosedState – A KSState with relativeConductance of 0

Parameters relativeConductance (none) –

18 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

ComponentType

class neuroml.nml.nml.ComponentType(name=None, extends=None, description=None, Property=None,
Parameter=None, Constant=None, Exposure=None,
Requirement=None, InstanceRequirement=None, Dynamics=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

ComponentType – Contains an extension to NeuroML by creating custom LEMS ComponentType.

CompoundInput

class neuroml.nml.nml.CompoundInput(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, pulse_generators=None,
sine_generators=None, ramp_generators=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

CompoundInput – Generates a current which is the sum of all its child basePointCurrent element, e. g. can be
a combination of pulseGenerator , sineGenerator elements producing a single i. Scaled by weight, if set

CompoundInputDL

class neuroml.nml.nml.CompoundInputDL(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, pulse_generator_dls=None,
sine_generator_dls=None, ramp_generator_dls=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

CompoundInputDL – Generates a current which is the sum of all its child basePointCurrentDL elements, e.
g. can be a combination of pulseGeneratorDL , sineGeneratorDL elements producing a single i. Scaled by
weight, if set

ConcentrationModel_D

class neuroml.nml.nml.ConcentrationModel_D(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, ion=None,
resting_conc=None, decay_constant=None,
shell_thickness=None,
type='decayingPoolConcentrationModel',
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.DecayingPoolConcentrationModel

1.3. API documentation 19

libNeuroML Documentation, Release 0.3.1

ConditionalDerivedVariable

class neuroml.nml.nml.ConditionalDerivedVariable(name=None, dimension=None, description=None,
exposure=None, Case=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.NamedDimensionalVariable

ConditionalDerivedVariable – LEMS ComponentType for ConditionalDerivedVariable

Connection

class neuroml.nml.nml.Connection(neuro_lex_id=None, id=None, pre_cell_id=None, pre_segment_id='0',
pre_fraction_along='0.5', post_cell_id=None, post_segment_id='0',
post_fraction_along='0.5', gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseConnectionOldFormat

Connection – Event connection directly between named components, which gets processed via a new instance
of a synapse component which is created on the target component. Normally contained inside a projection
element.

get_post_cell_id()
Get the ID of the post-synaptic cell

Returns ID of post-synaptic cell

Return type str

get_post_fraction_along()
Get post-synaptic fraction along information

get_post_info()
Get post-synaptic information summary

get_post_segment_id()
Get the ID of the post-synpatic segment

Returns ID of post-synaptic segment.

Return type str

get_pre_cell_id()
Get the ID of the pre-synaptic cell

Returns ID of pre-synaptic cell

Return type str

get_pre_fraction_along()
Get pre-synaptic fraction along information

get_pre_info()
Get pre-synaptic information summary

get_pre_segment_id()
Get the ID of the pre-synpatic segment

Returns ID of pre-synaptic segment.

Return type str

20 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

ConnectionWD

class neuroml.nml.nml.ConnectionWD(neuro_lex_id=None, id=None, pre_cell_id=None, pre_segment_id='0',
pre_fraction_along='0.5', post_cell_id=None, post_segment_id='0',
post_fraction_along='0.5', weight=None, delay=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseConnectionOldFormat

ConnectionWD – Event connection between named components, which gets processed via a new instance of
a synapse component which is created on the target component, includes setting of weight and delay for the
synaptic connection

Parameters

• weight (none) –

• delay (time) –

get_delay_in_ms()
Get connection delay in milli seconds

Returns connection delay in milli seconds

Return type float

get_post_cell_id()
Get the ID of the post-synaptic cell

Returns ID of post-synaptic cell

Return type str

get_post_fraction_along()
Get post-synaptic fraction along information

get_post_info()
Get post-synaptic information summary

get_post_segment_id()
Get the ID of the post-synpatic segment

Returns ID of post-synaptic segment.

Return type str

get_pre_cell_id()
Get the ID of the pre-synaptic cell

Returns ID of pre-synaptic cell

Return type str

get_pre_fraction_along()
Get pre-synaptic fraction along information

get_pre_info()
Get pre-synaptic information summary

get_pre_segment_id()
Get the ID of the pre-synpatic segment

Returns ID of pre-synaptic segment.

Return type str

1.3. API documentation 21

libNeuroML Documentation, Release 0.3.1

Constant

class neuroml.nml.nml.Constant(name=None, dimension=None, value=None, description=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

Constant – LEMS ComponentType for Constant.

ContinuousConnection

class neuroml.nml.nml.ContinuousConnection(neuro_lex_id=None, id=None, pre_cell=None,
pre_segment='0', pre_fraction_along='0.5', post_cell=None,
post_segment='0', post_fraction_along='0.5',
pre_component=None, post_component=None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseConnectionNewFormat

ContinuousConnection – An instance of a connection in a continuousProjection between presynapticPopula-
tion to another postsynapticPopulation through a preComponent at the start and postComponent at the end.
Can be used for analog synapses.

get_post_cell_id()
Get the ID of the post-synaptic cell

Returns ID of post-synaptic cell

Return type str

get_post_fraction_along()
Get post-synaptic fraction along information

get_post_info()
Get post-synaptic information summary

get_post_segment_id()
Get the ID of the post-synpatic segment

Returns ID of post-synaptic segment.

Return type str

get_pre_cell_id()
Get the ID of the pre-synaptic cell

Returns ID of pre-synaptic cell

Return type str

get_pre_fraction_along()
Get pre-synaptic fraction along information

get_pre_info()
Get pre-synaptic information summary

get_pre_segment_id()
Get the ID of the pre-synpatic segment

Returns ID of pre-synaptic segment.

Return type str

22 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

ContinuousConnectionInstance

class neuroml.nml.nml.ContinuousConnectionInstance(neuro_lex_id=None, id=None, pre_cell=None,
pre_segment='0', pre_fraction_along='0.5',
post_cell=None, post_segment='0',
post_fraction_along='0.5', pre_component=None,
post_component=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.ContinuousConnection

ContinuousConnectionInstance – An instance of a connection in a continuousProjection between presynap-
ticPopulation to another postsynapticPopulation through a preComponent at the start and postComponent
at the end. Populations need to be of type populationList and contain instance and location elements. Can be
used for analog synapses.

ContinuousConnectionInstanceW

class neuroml.nml.nml.ContinuousConnectionInstanceW(neuro_lex_id=None, id=None, pre_cell=None,
pre_segment='0', pre_fraction_along='0.5',
post_cell=None, post_segment='0',
post_fraction_along='0.5',
pre_component=None, post_component=None,
weight=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.ContinuousConnectionInstance

ContinuousConnectionInstanceW – An instance of a connection in a continuousProjection between presynap-
ticPopulation to another postsynapticPopulation through a preComponent at the start and postComponent
at the end. Populations need to be of type populationList and contain instance and location elements. Can be
used for analog synapses. Includes setting of weight for the connection

Parameters weight (none) –

get_weight()
Get weight.

If weight is not set, the default value of 1.0 is returned.

ContinuousProjection

class neuroml.nml.nml.ContinuousProjection(neuro_lex_id=None, id=None,
presynaptic_population=None,
postsynaptic_population=None,
continuous_connections=None,
continuous_connection_instances=None,
continuous_connection_instance_ws=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseProjection

ContinuousProjection – A projection between presynapticPopulation and postsynapticPopulation through
components preComponent at the start and postComponent at the end of a continuousConnection or contin-
uousConnectionInstance . Can be used for analog synapses.

exportHdf5(h5file, h5Group)
Export to HDF5 file.

1.3. API documentation 23

libNeuroML Documentation, Release 0.3.1

DecayingPoolConcentrationModel

class neuroml.nml.nml.DecayingPoolConcentrationModel(neuro_lex_id=None, id=None, metaid=None,
notes=None, properties=None,
annotation=None, ion=None,
resting_conc=None, decay_constant=None,
shell_thickness=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

DecayingPoolConcentrationModel – Model of an intracellular buffering mechanism for ion (currently hard
Coded to be calcium, due to requirement for iCa) which has a baseline level restingConc and tends to this
value with time course decayConstant. The ion is assumed to occupy a shell inside the membrane of thickness
shellThickness.

Parameters

• restingConc (concentration) –

• decayConstant (time) –

• shellThickness (length) –

DerivedVariable

class neuroml.nml.nml.DerivedVariable(name=None, dimension=None, description=None,
exposure=None, value=None, select=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.NamedDimensionalVariable

DerivedVariable – LEMS ComponentType for DerivedVariable

DistalDetails

class neuroml.nml.nml.DistalDetails(normalization_end=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

DoubleSynapse

class neuroml.nml.nml.DoubleSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, synapse1=None,
synapse2=None, synapse1_path=None, synapse2_path=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseVoltageDepSynapse

DoubleSynapse – Synapse consisting of two independent synaptic mechanisms (e. g. AMPA-R and NMDA-R
), which can be easily colocated in connections

24 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

Dynamics

class neuroml.nml.nml.Dynamics(StateVariable=None, DerivedVariable=None,
ConditionalDerivedVariable=None, TimeDerivative=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

Dynamics – LEMS ComponentType for Dynamics

EIF_cond_alpha_isfa_ista

class neuroml.nml.nml.EIF_cond_alpha_isfa_ista(neuro_lex_id=None, id=None, metaid=None,
notes=None, properties=None, annotation=None,
cm=None, i_offset=None, tau_syn_E=None,
tau_syn_I=None, v_init=None, tau_m=None,
tau_refrac=None, v_reset=None, v_rest=None,
v_thresh=None, e_rev_E=None, e_rev_I=None,
a=None, b=None, delta_T=None, tau_w=None,
v_spike=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.EIF_cond_exp_isfa_ista

EIF_cond_alpha_isfa_ista – Adaptive exponential integrate and fire neuron according to Brette R and Gerstner
W (2005) with alpha-function-shaped post-synaptic conductance

Parameters

• v_spike (none) –

• delta_T (none) –

• tau_w (none) –

• a (none) –

• b (none) –

• e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

1.3. API documentation 25

libNeuroML Documentation, Release 0.3.1

EIF_cond_exp_isfa_ista

class neuroml.nml.nml.EIF_cond_exp_isfa_ista(neuro_lex_id=None, id=None, metaid=None,
notes=None, properties=None, annotation=None,
cm=None, i_offset=None, tau_syn_E=None,
tau_syn_I=None, v_init=None, tau_m=None,
tau_refrac=None, v_reset=None, v_rest=None,
v_thresh=None, e_rev_E=None, e_rev_I=None, a=None,
b=None, delta_T=None, tau_w=None, v_spike=None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.basePyNNIaFCondCell

EIF_cond_exp_isfa_ista – Adaptive exponential integrate and fire neuron according to Brette R and Gerstner W
(2005) with exponentially-decaying post-synaptic conductance

Parameters

• v_spike (none) –

• delta_T (none) –

• tau_w (none) –

• a (none) –

• b (none) –

• e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

26 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

ElectricalConnection

class neuroml.nml.nml.ElectricalConnection(neuro_lex_id=None, id=None, pre_cell=None,
pre_segment='0', pre_fraction_along='0.5', post_cell=None,
post_segment='0', post_fraction_along='0.5',
synapse=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseConnectionNewFormat

ElectricalConnection – To enable connections between populations through gap junctions.

get_post_cell_id()
Get the ID of the post-synaptic cell

Returns ID of post-synaptic cell

Return type str

get_post_fraction_along()
Get post-synaptic fraction along information

get_post_info()
Get post-synaptic information summary

get_post_segment_id()
Get the ID of the post-synpatic segment

Returns ID of post-synaptic segment.

Return type str

get_pre_cell_id()
Get the ID of the pre-synaptic cell

Returns ID of pre-synaptic cell

Return type str

get_pre_fraction_along()
Get pre-synaptic fraction along information

get_pre_info()
Get pre-synaptic information summary

get_pre_segment_id()
Get the ID of the pre-synpatic segment

Returns ID of pre-synaptic segment.

Return type str

ElectricalConnectionInstance

class neuroml.nml.nml.ElectricalConnectionInstance(neuro_lex_id=None, id=None, pre_cell=None,
pre_segment='0', pre_fraction_along='0.5',
post_cell=None, post_segment='0',
post_fraction_along='0.5', synapse=None,
extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.ElectricalConnection

1.3. API documentation 27

libNeuroML Documentation, Release 0.3.1

ElectricalConnectionInstance – To enable connections between populations through gap junctions. Populations
need to be of type populationList and contain instance and location elements.

ElectricalConnectionInstanceW

class neuroml.nml.nml.ElectricalConnectionInstanceW(neuro_lex_id=None, id=None, pre_cell=None,
pre_segment='0', pre_fraction_along='0.5',
post_cell=None, post_segment='0',
post_fraction_along='0.5', synapse=None,
weight=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.ElectricalConnectionInstance

ElectricalConnectionInstanceW – To enable connections between populations through gap junctions. Popula-
tions need to be of type populationList and contain instance and location elements. Includes setting of weight
for the connection

Parameters weight (none) –

get_weight()
Get the weight of the connection

If a weight is not set (or is set to None), returns the default value of 1.0.

Returns weight of connection or 1.0 if not set

Return type float

ElectricalProjection

class neuroml.nml.nml.ElectricalProjection(neuro_lex_id=None, id=None,
presynaptic_population=None,
postsynaptic_population=None,
electrical_connections=None,
electrical_connection_instances=None,
electrical_connection_instance_ws=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseProjection

ElectricalProjection – A projection between presynapticPopulation to another postsynapticPopulation
through gap junctions.

exportHdf5(h5file, h5Group)
Export to HDF5 file.

ExpCondSynapse

class neuroml.nml.nml.ExpCondSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, tau_syn=None, e_rev=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BasePynnSynapse

ExpCondSynapse – Conductance based synapse with instantaneous rise and single exponential decay (with time
constant tau_syn)

Parameters

28 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

• e_rev (none) –

• tau_syn (none) –

ExpCurrSynapse

class neuroml.nml.nml.ExpCurrSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, tau_syn=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BasePynnSynapse

ExpCurrSynapse – Current based synapse with instantaneous rise and single exponential decay (with time con-
stant tau_syn)

Parameters tau_syn (none) –

ExpOneSynapse

class neuroml.nml.nml.ExpOneSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, gbase=None, erev=None,
tau_decay=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseConductanceBasedSynapse

ExpOneSynapse – Ohmic synapse model whose conductance rises instantaneously by (gbase * weight) on
receiving an event, and which decays exponentially to zero with time course tauDecay

Parameters

• tauDecay (time) – Time course of decay

• gbase (conductance) – Baseline conductance, generally the maximum conductance fol-
lowing a single spike

• erev (voltage) – Reversal potential of the synapse

ExpThreeSynapse

class neuroml.nml.nml.ExpThreeSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, gbase1=None, gbase2=None,
erev=None, tau_decay1=None, tau_decay2=None, tau_rise=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseConductanceBasedSynapseTwo

ExpThreeSynapse – Ohmic synapse similar to expTwoSynapse but consisting of two components that can differ
in decay times and max conductances but share the same rise time.

Parameters

• tauRise (time) –

• tauDecay1 (time) –

• tauDecay2 (time) –

• gbase1 (conductance) – Baseline conductance 1

• gbase2 (conductance) – Baseline conductance 2

• erev (voltage) – Reversal potential of the synapse

1.3. API documentation 29

libNeuroML Documentation, Release 0.3.1

ExpTwoSynapse

class neuroml.nml.nml.ExpTwoSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, gbase=None, erev=None,
tau_decay=None, tau_rise=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseConductanceBasedSynapse

ExpTwoSynapse – Ohmic synapse model whose conductance waveform on receiving an event has a rise time of
tauRise and a decay time of tauDecay. Max conductance reached during this time (assuming zero conductance
before) is gbase * weight.

Parameters

• tauRise (time) –

• tauDecay (time) –

• gbase (conductance) – Baseline conductance, generally the maximum conductance fol-
lowing a single spike

• erev (voltage) – Reversal potential of the synapse

ExplicitInput

class neuroml.nml.nml.ExplicitInput(target=None, input=None, destination=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

ExplicitInput – An explicit input (anything which extends basePointCurrent) to a target cell in a population

get_fraction_along()
Get fraction along.

Returns 0.5 is fraction_along was not set.

get_segment_id()
Get the ID of the segment.

Returns 0 if segment_id was not set.

get_target_cell_id()
Get target cell ID

get_target_population()
Get target population.

Exposure

class neuroml.nml.nml.Exposure(name=None, dimension=None, description=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

Exposure – LEMS Exposure (ComponentType property)

30 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

ExtracellularProperties

class neuroml.nml.nml.ExtracellularProperties(neuro_lex_id=None, id=None, species=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

ExtracellularPropertiesLocal

class neuroml.nml.nml.ExtracellularPropertiesLocal(species=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

FitzHughNagumo1969Cell

class neuroml.nml.nml.FitzHughNagumo1969Cell(neuro_lex_id=None, id=None, metaid=None,
notes=None, properties=None, annotation=None,
a=None, b=None, I=None, phi=None, V0=None,
W0=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseCell

FitzHughNagumo1969Cell – The Fitzhugh Nagumo model is a two-dimensional simplification of the Hodgkin-
Huxley model of spike generation in squid giant axons. This system was suggested by FitzHugh (FitzHugh R.
[1961]: Impulses and physiological states in theoretical models of nerve membrane. Biophysical J. 1:445-466),
who called it ” Bonhoeffer-van der Pol model “, and the equivalent circuit by Nagumo et al. (Nagumo J. , Arimoto
S. , and Yoshizawa S. [1962] An active pulse transmission line simulating nerve axon. Proc IRE. 50:2061-2070.
1962). This version corresponds to the one described in FitzHugh R. [1969]: Mathematical models of excitation
and propagation in nerve. Chapter 1 (pp. 1-85 in H. P. Schwan, ed. Biological Engineering, McGraw-Hill Book
Co. , N. Y.)

Parameters

• a (none) –

• b (none) –

• I (none) – plays the role of an external injected current

• phi (none) –

• V0 (none) –

• W0 (none) –

FitzHughNagumoCell

class neuroml.nml.nml.FitzHughNagumoCell(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, I=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseCell

FitzHughNagumoCell – Simple dimensionless model of spiking cell from FitzHugh and Nagumo. Superseded
by fitzHughNagumo1969Cell (See https://github.com/NeuroML/NeuroML2/issues/42)

Parameters I (none) –

1.3. API documentation 31

https://github.com/NeuroML/NeuroML2/issues/42

libNeuroML Documentation, Release 0.3.1

FixedFactorConcentrationModel

class neuroml.nml.nml.FixedFactorConcentrationModel(neuro_lex_id=None, id=None, metaid=None,
notes=None, properties=None,
annotation=None, ion=None,
resting_conc=None, decay_constant=None,
rho=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

FixedFactorConcentrationModel – Model of buffering of concentration of an ion (currently hard coded to be
calcium, due to requirement for iCa) which has a baseline level restingConc and tends to this value with time
course decayConstant. A fixed factor rho is used to scale the incoming current independently of the size of the
compartment to produce a concentration change.

Parameters

• restingConc (concentration) –

• decayConstant (time) –

• rho (rho_factor) –

ForwardTransition

class neuroml.nml.nml.ForwardTransition(neuro_lex_id=None, id=None, from_=None, to=None,
anytypeobjs_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

ForwardTransition – A forward only KSTransition for a gateKS which specifies a rate (type baseHHRate)
which follows one of the standard Hodgkin Huxley forms (e. g. HHExpRate , HHSigmoidRate , HHExpLin-
earRate

GapJunction

class neuroml.nml.nml.GapJunction(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, conductance=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseSynapse

GapJunction – Gap junction/single electrical connection

Parameters conductance (conductance) –

GateFractional

class neuroml.nml.nml.GateFractional(neuro_lex_id=None, id=None, instances=None, notes=None,
q10_settings=None, sub_gates=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Base

GateFractional – Gate composed of subgates contributing with fractional conductance

Parameters instances (none) –

32 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

GateFractionalSubgate

class neuroml.nml.nml.GateFractionalSubgate(neuro_lex_id=None, id=None,
fractional_conductance=None, notes=None,
q10_settings=None, steady_state=None,
time_course=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

GateHHInstantaneous

class neuroml.nml.nml.GateHHInstantaneous(neuro_lex_id=None, id=None, instances=None, notes=None,
steady_state=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

GateHHInstantaneous – Gate which follows the general Hodgkin Huxley formalism but is instantaneous, so tau
= 0 and gate follows exactly inf value

Parameters instances (none) –

GateHHRates

class neuroml.nml.nml.GateHHRates(neuro_lex_id=None, id=None, instances=None, notes=None,
q10_settings=None, forward_rate=None, reverse_rate=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

GateHHRates – Gate which follows the general Hodgkin Huxley formalism

Parameters instances (none) –

GateHHRatesInf

class neuroml.nml.nml.GateHHRatesInf(neuro_lex_id=None, id=None, instances=None, notes=None,
q10_settings=None, forward_rate=None, reverse_rate=None,
steady_state=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

GateHHRatesInf – Gate which follows the general Hodgkin Huxley formalism

Parameters instances (none) –

GateHHRatesTau

class neuroml.nml.nml.GateHHRatesTau(neuro_lex_id=None, id=None, instances=None, notes=None,
q10_settings=None, forward_rate=None, reverse_rate=None,
time_course=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

GateHHRatesTau – Gate which follows the general Hodgkin Huxley formalism

Parameters instances (none) –

1.3. API documentation 33

libNeuroML Documentation, Release 0.3.1

GateHHRatesTauInf

class neuroml.nml.nml.GateHHRatesTauInf(neuro_lex_id=None, id=None, instances=None, notes=None,
q10_settings=None, forward_rate=None, reverse_rate=None,
time_course=None, steady_state=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Base

GateHHRatesTauInf – Gate which follows the general Hodgkin Huxley formalism

Parameters instances (none) –

GateHHTauInf

class neuroml.nml.nml.GateHHTauInf(neuro_lex_id=None, id=None, instances=None, notes=None,
q10_settings=None, time_course=None, steady_state=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

GateHHTauInf – Gate which follows the general Hodgkin Huxley formalism

Parameters instances (none) –

GateHHUndetermined

class neuroml.nml.nml.GateHHUndetermined(neuro_lex_id=None, id=None, instances=None, type=None,
notes=None, q10_settings=None, forward_rate=None,
reverse_rate=None, time_course=None, steady_state=None,
sub_gates=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

GateHHUndetermined – Note all sub elements for gateHHrates, gateHHratesTau, gateFractional etc. allowed
here. Which are valid should be constrained by what type is set

GateKS

class neuroml.nml.nml.GateKS(neuro_lex_id=None, id=None, instances=None, notes=None,
q10_settings=None, closed_states=None, open_states=None,
forward_transition=None, reverse_transition=None, tau_inf_transition=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

GateKS – A gate which consists of multiple KSState s and KSTransition s giving the rates of transition between
them

Parameters instances (none) –

34 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

GradedSynapse

class neuroml.nml.nml.GradedSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, conductance=None,
delta=None, Vth=None, k=None, erev=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.BaseSynapse

GradedSynapse – Graded/analog synapse. Based on synapse in Methods of http://www. na-
ture.com/neuro/journal/v7/n12/abs/nn1352.html

Parameters

• conductance (conductance) –

• delta (voltage) – Slope of the activation curve

• k (per_time) – Rate constant for transmitter-receptor dissociation rate

• Vth (voltage) – The half-activation voltage of the synapse

• erev (voltage) – The reversal potential of the synapse

GridLayout

class neuroml.nml.nml.GridLayout(x_size=None, y_size=None, z_size=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

HHRate

class neuroml.nml.nml.HHRate(type=None, rate=None, midpoint=None, scale=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

HHTime

class neuroml.nml.nml.HHTime(type=None, rate=None, midpoint=None, scale=None, tau=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

HHVariable

class neuroml.nml.nml.HHVariable(type=None, rate=None, midpoint=None, scale=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

1.3. API documentation 35

http://www

libNeuroML Documentation, Release 0.3.1

HH_cond_exp

class neuroml.nml.nml.HH_cond_exp(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, cm=None, i_offset=None,
tau_syn_E=None, tau_syn_I=None, v_init=None, v_offset=None,
e_rev_E=None, e_rev_I=None, e_rev_K=None, e_rev_Na=None,
e_rev_leak=None, g_leak=None, gbar_K=None, gbar_Na=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.basePyNNCell

HH_cond_exp – Single-compartment Hodgkin-Huxley-type neuron with transient sodium and delayed-rectifier
potassium currents using the ion channel models from Traub.

Parameters

• gbar_K (none) –

• gbar_Na (none) –

• g_leak (none) –

• e_rev_K (none) –

• e_rev_Na (none) –

• e_rev_leak (none) –

• v_offset (none) –

• e_rev_E (none) –

• e_rev_I (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I – This parameter is never used in the NeuroML2 description of this cell! Any
synapse producing a current can be placed on this cell

:type tau _syn_I: none :param v_init: :type v_init: none

IF_cond_alpha

class neuroml.nml.nml.IF_cond_alpha(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, cm=None, i_offset=None,
tau_syn_E=None, tau_syn_I=None, v_init=None, tau_m=None,
tau_refrac=None, v_reset=None, v_rest=None, v_thresh=None,
e_rev_E=None, e_rev_I=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.basePyNNIaFCondCell

IF_cond_alpha – Leaky integrate and fire model with fixed threshold and alpha-function-shaped post-synaptic
conductance

Parameters

• e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

36 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

• e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

IF_cond_exp

class neuroml.nml.nml.IF_cond_exp(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, cm=None, i_offset=None,
tau_syn_E=None, tau_syn_I=None, v_init=None, tau_m=None,
tau_refrac=None, v_reset=None, v_rest=None, v_thresh=None,
e_rev_E=None, e_rev_I=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.basePyNNIaFCondCell

IF_cond_exp – Leaky integrate and fire model with fixed threshold and exponentially-decaying post-synaptic
conductance

Parameters

• e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

1.3. API documentation 37

libNeuroML Documentation, Release 0.3.1

• v_init (none) –

IF_curr_alpha

class neuroml.nml.nml.IF_curr_alpha(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, cm=None, i_offset=None,
tau_syn_E=None, tau_syn_I=None, v_init=None, tau_m=None,
tau_refrac=None, v_reset=None, v_rest=None, v_thresh=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.basePyNNIaFCell

IF_curr_alpha – Leaky integrate and fire model with fixed threshold and alpha-function-shaped post-synaptic
current

Parameters

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

IF_curr_exp

class neuroml.nml.nml.IF_curr_exp(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, cm=None, i_offset=None,
tau_syn_E=None, tau_syn_I=None, v_init=None, tau_m=None,
tau_refrac=None, v_reset=None, v_rest=None, v_thresh=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.basePyNNIaFCell

IF_curr_exp – Leaky integrate and fire model with fixed threshold and decaying-exponential post-synaptic cur-
rent

Parameters

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

38 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

IafCell

class neuroml.nml.nml.IafCell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None,
annotation=None, leak_reversal=None, thresh=None, reset=None, C=None,
leak_conductance=None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.BaseCell

IafCell – Integrate and fire cell with capacitance C, leakConductance and leakReversal

Parameters

• leakConductance (conductance) –

• leakReversal (voltage) –

• thresh (voltage) –

• reset (voltage) –

• C (capacitance) – Total capacitance of the cell membrane

IafRefCell

class neuroml.nml.nml.IafRefCell(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, leak_reversal=None, thresh=None,
reset=None, C=None, leak_conductance=None, refract=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.IafCell

IafRefCell – Integrate and fire cell with capacitance C, leakConductance, leakReversal and refractory period
refract

Parameters

• refract (time) –

• leakConductance (conductance) –

• leakReversal (voltage) –

• thresh (voltage) –

• reset (voltage) –

• C (capacitance) – Total capacitance of the cell membrane

1.3. API documentation 39

libNeuroML Documentation, Release 0.3.1

IafTauCell

class neuroml.nml.nml.IafTauCell(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, leak_reversal=None, thresh=None,
reset=None, tau=None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.BaseCell

IafTauCell – Integrate and fire cell which returns to its leak reversal potential of leakReversal with a time constant
tau

Parameters

• leakReversal (voltage) –

• tau (time) –

• thresh (voltage) – The membrane potential at which to emit a spiking event and reset
voltage

• reset (voltage) – The value the membrane potential is reset to on spiking

IafTauRefCell

class neuroml.nml.nml.IafTauRefCell(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, leak_reversal=None,
thresh=None, reset=None, tau=None, refract=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.IafTauCell

IafTauRefCell – Integrate and fire cell which returns to its leak reversal potential of leakReversal with a time
course tau. It has a refractory period of refract after spiking

Parameters

• refract (time) –

• leakReversal (voltage) –

• tau (time) –

• thresh (voltage) – The membrane potential at which to emit a spiking event and reset
voltage

• reset (voltage) – The value the membrane potential is reset to on spiking

Include

class neuroml.nml.nml.Include(segment_groups=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

Include – Include all members of another segmentGroup in this group

40 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

IncludeType

class neuroml.nml.nml.IncludeType(href=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

InhomogeneousParameter

class neuroml.nml.nml.InhomogeneousParameter(neuro_lex_id=None, id=None, variable=None,
metric=None, proximal=None, distal=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

InhomogeneousParameter – An inhomogeneous parameter specified across the segmentGroup (see variablePa-
rameter for usage).

InhomogeneousValue

class neuroml.nml.nml.InhomogeneousValue(inhomogeneous_parameters=None, value=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

InhomogeneousValue – Specifies the value of an inhomogeneousParameter. For usage see variableParameter

InitMembPotential

class neuroml.nml.nml.InitMembPotential(value=None, segment_groups='all', gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

InitMembPotential – Explicitly set initial membrane potential for the cell

Parameters value (voltage) –

Input

class neuroml.nml.nml.Input(id=None, target=None, destination=None, segment_id=None,
fraction_along=None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

Input – Specifies a single input to a target, optionally giving the segmentId (default 0) and fractionAlong the
segment (default 0. 5).

get_fraction_along()
Get fraction along.

Returns 0.5 is fraction_along was not set.

get_segment_id()
Get the ID of the segment.

Returns 0 if segment_id was not set.

get_target_cell_id()
Get ID of target cell.

1.3. API documentation 41

libNeuroML Documentation, Release 0.3.1

InputList

class neuroml.nml.nml.InputList(neuro_lex_id=None, id=None, populations=None, component=None,
input=None, input_ws=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

InputList – An explicit list of input s to a population.

exportHdf5(h5file, h5Group)
Export to HDF5 file.

InputW

class neuroml.nml.nml.InputW(id=None, target=None, destination=None, segment_id=None,
fraction_along=None, weight=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Input

InputW – Specifies input lists. Can set weight to scale individual inputs.

Parameters weight (none) –

get_weight()
Get weight.

If weight is not set, the default value of 1.0 is returned.

Instance

class neuroml.nml.nml.Instance(id=None, i=None, j=None, k=None, location=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

Instance – Specifies a single instance of a component in a population (placed at location).

InstanceRequirement

class neuroml.nml.nml.InstanceRequirement(name=None, type=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

IntracellularProperties

class neuroml.nml.nml.IntracellularProperties(species=None, resistivities=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

IntracellularProperties – Biophysical properties related to the intracellular space within the cell , such as the
resistivity and the list of ionic species present. caConc and caConcExt are explicitly exposed here to facilitate
accessing these values from other Components, even though caConcExt is clearly not an intracellular property

42 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

IntracellularProperties2CaPools

class neuroml.nml.nml.IntracellularProperties2CaPools(species=None, resistivities=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.IntracellularProperties

IntracellularProperties2CaPools – Variant of intracellularProperties with 2 independent Ca pools

IonChannel

class neuroml.nml.nml.IonChannel(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, q10_conductance_scalings=None,
species=None, type=None, conductance=None, gates=None,
gate_hh_rates=None, gate_h_hrates_taus=None,
gate_hh_tau_infs=None, gate_h_hrates_infs=None,
gate_h_hrates_tau_infs=None, gate_hh_instantaneouses=None,
gate_fractionals=None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.IonChannelScalable

IonChannel – Note ionChannel and ionChannelHH are currently functionally identical. This is needed since
many existing examples use ionChannel, some use ionChannelHH. NeuroML v2beta4 should remove one of
these, probably ionChannelHH.

Parameters conductance (conductance) –

IonChannelHH

class neuroml.nml.nml.IonChannelHH(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None,
q10_conductance_scalings=None, species=None, type=None,
conductance=None, gates=None, gate_hh_rates=None,
gate_h_hrates_taus=None, gate_hh_tau_infs=None,
gate_h_hrates_infs=None, gate_h_hrates_tau_infs=None,
gate_hh_instantaneouses=None, gate_fractionals=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.IonChannel

IonChannelHH – Note ionChannel and ionChannelHH are currently functionally identical. This is needed
since many existing examples use ionChannel, some use ionChannelHH. NeuroML v2beta4 should remove one
of these, probably ionChannelHH.

Parameters conductance (conductance) –

1.3. API documentation 43

libNeuroML Documentation, Release 0.3.1

IonChannelKS

class neuroml.nml.nml.IonChannelKS(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, species=None,
conductance=None, gate_kses=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Standalone

A kinetic scheme based ion channel with multiple gateKS s, each of which consists of multiple KSState s and
KSTransition s giving the rates of transition between them IonChannelKS – A kinetic scheme based ion channel
with multiple gateKS s, each of which consists of multiple KSState s and KSTransition s giving the rates of
transition between them

Parameters conductance (conductance) –

IonChannelScalable

class neuroml.nml.nml.IonChannelScalable(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None,
q10_conductance_scalings=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

IonChannelVShift

class neuroml.nml.nml.IonChannelVShift(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None,
q10_conductance_scalings=None, species=None, type=None,
conductance=None, gates=None, gate_hh_rates=None,
gate_h_hrates_taus=None, gate_hh_tau_infs=None,
gate_h_hrates_infs=None, gate_h_hrates_tau_infs=None,
gate_hh_instantaneouses=None, gate_fractionals=None,
v_shift=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.IonChannel

IonChannelVShift – Same as ionChannel , but with a vShift parameter to change voltage activation of gates.
The exact usage of vShift in expressions for rates is determined by the individual gates.

Parameters

• vShift (voltage) –

• conductance (conductance) –

Izhikevich2007Cell

class neuroml.nml.nml.Izhikevich2007Cell(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, C=None, v0=None,
k=None, vr=None, vt=None, vpeak=None, a=None, b=None,
c=None, d=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseCellMembPotCap

Izhikevich2007Cell – Cell based on the modified Izhikevich model in Izhikevich 2007, Dynamical systems in
neuroscience, MIT Press

44 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

Parameters

• v0 (voltage) –

• k (conductance_per_voltage) –

• vr (voltage) –

• vt (voltage) –

• vpeak (voltage) –

• a (per_time) –

• b (conductance) –

• c (voltage) –

• d (current) –

• C (capacitance) – Total capacitance of the cell membrane

IzhikevichCell

class neuroml.nml.nml.IzhikevichCell(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, v0=None, thresh=None,
a=None, b=None, c=None, d=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.BaseCell

IzhikevichCell – Cell based on the 2003 model of Izhikevich, see http://izhikevich.org/publications/spikes.htm

Parameters

• v0 (voltage) – Initial membrane potential

• a (none) – Time scale of the recovery variable U

• b (none) – Sensitivity of U to the subthreshold fluctuations of the membrane potential V

• c (none) – After-spike reset value of V

• d (none) – After-spike increase to U

• thresh (voltage) – Spike threshold

LEMS_Property

class neuroml.nml.nml.LEMS_Property(name=None, dimension=None, description=None,
default_value=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.NamedDimensionalType

1.3. API documentation 45

http://izhikevich.org/publications/spikes.htm

libNeuroML Documentation, Release 0.3.1

Layout

class neuroml.nml.nml.Layout(spaces=None, random=None, grid=None, unstructured=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

LinearGradedSynapse

class neuroml.nml.nml.LinearGradedSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, conductance=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseSynapse

LinearGradedSynapse – Behaves just like a one way gap junction.

Parameters conductance (conductance) –

Location

class neuroml.nml.nml.Location(x=None, y=None, z=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

Location – Specifies the (x, y, z) location of a single instance of a component in a population

Parameters

• x (none) –

• y (none) –

• z (none) –

Member

class neuroml.nml.nml.Member(segments=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

Member – A single identified segment which is part of the segmentGroup

MembraneProperties

class neuroml.nml.nml.MembraneProperties(channel_populations=None, channel_densities=None,
channel_density_v_shifts=None,
channel_density_nernsts=None, channel_density_ghks=None,
channel_density_ghk2s=None,
channel_density_non_uniforms=None,
channel_density_non_uniform_nernsts=None,
channel_density_non_uniform_ghks=None,
spike_threshes=None, specific_capacitances=None,
init_memb_potentials=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

46 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

MembraneProperties – Properties specific to the membrane, such as the populations of channels, channelDen-
sities, specificCapacitance, etc.

MembraneProperties2CaPools

class neuroml.nml.nml.MembraneProperties2CaPools(channel_populations=None,
channel_densities=None,
channel_density_v_shifts=None,
channel_density_nernsts=None,
channel_density_ghks=None,
channel_density_ghk2s=None,
channel_density_non_uniforms=None,
channel_density_non_uniform_nernsts=None,
channel_density_non_uniform_ghks=None,
spike_threshes=None, specific_capacitances=None,
init_memb_potentials=None,
channel_density_nernst_ca2s=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.MembraneProperties

MembraneProperties2CaPools – Variant of membraneProperties with 2 independent Ca pools

MixedContainer:

Morphology

class neuroml.nml.nml.Morphology(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, segments=None,
segment_groups=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

Morphology – The collection of segment s which specify the 3D structure of the cell, along with a number of
segmentGroup s

property num_segments
Get the number of segments included in this cell morphology.

Returns number of segments

Return type int

NamedDimensionalType

class neuroml.nml.nml.NamedDimensionalType(name=None, dimension=None, description=None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

1.3. API documentation 47

libNeuroML Documentation, Release 0.3.1

NamedDimensionalVariable

class neuroml.nml.nml.NamedDimensionalVariable(name=None, dimension=None, description=None,
exposure=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

Network

class neuroml.nml.nml.Network(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None,
annotation=None, type=None, temperature=None, spaces=None,
regions=None, extracellular_properties=None, populations=None,
cell_sets=None, synaptic_connections=None, projections=None,
electrical_projections=None, continuous_projections=None,
explicit_inputs=None, input_lists=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

Network – Network containing: population s (potentially of type populationList , and so specifying a list of
cell location s); projection s (with lists of connection s) and/or explicitConnection s; and inputList s (with
lists of input s) and/or explicitInput s. Note: often in NeuroML this will be of type networkWithTemperature
if there are temperature dependent elements (e. g. ion channels).

exportHdf5(h5file, h5Group)
Export to HDF5 file.

get_by_id(id)
Get a component by its ID

Parameters id (str) – ID of component to find

Returns component with specified ID or None if no component with specified ID found

48 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

NeuroMLDocument

class neuroml.nml.nml.NeuroMLDocument(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, includes=None,
extracellular_properties=None, intracellular_properties=None,
morphology=None, ion_channel=None, ion_channel_hhs=None,
ion_channel_v_shifts=None, ion_channel_kses=None,
decaying_pool_concentration_models=None,
fixed_factor_concentration_models=None,
alpha_current_synapses=None, alpha_synapses=None,
exp_one_synapses=None, exp_two_synapses=None,
exp_three_synapses=None, blocking_plastic_synapses=None,
double_synapses=None, gap_junctions=None,
silent_synapses=None, linear_graded_synapses=None,
graded_synapses=None, biophysical_properties=None,
cells=None, cell2_ca_poolses=None, base_cells=None,
iaf_tau_cells=None, iaf_tau_ref_cells=None, iaf_cells=None,
iaf_ref_cells=None, izhikevich_cells=None,
izhikevich2007_cells=None, ad_ex_ia_f_cells=None,
fitz_hugh_nagumo_cells=None,
fitz_hugh_nagumo1969_cells=None,
pinsky_rinzel_ca3_cells=None, pulse_generators=None,
pulse_generator_dls=None, sine_generators=None,
sine_generator_dls=None, ramp_generators=None,
ramp_generator_dls=None, compound_inputs=None,
compound_input_dls=None, voltage_clamps=None,
voltage_clamp_triples=None, spike_arrays=None,
timed_synaptic_inputs=None, spike_generators=None,
spike_generator_randoms=None, spike_generator_poissons=None,
spike_generator_ref_poissons=None,
poisson_firing_synapses=None,
transient_poisson_firing_synapses=None, IF_curr_alpha=None,
IF_curr_exp=None, IF_cond_alpha=None, IF_cond_exp=None,
EIF_cond_exp_isfa_ista=None, EIF_cond_alpha_isfa_ista=None,
HH_cond_exp=None, exp_cond_synapses=None,
alpha_cond_synapses=None, exp_curr_synapses=None,
alpha_curr_synapses=None, SpikeSourcePoisson=None,
networks=None, ComponentType=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Standalone

append(element)
Append an element

Parameters element (Object) – element to append

get_by_id(id)
Get a component by specifying its ID.

Parameters id (str) – id of Component to get

Returns Component with given ID or None if no Component with provided ID was found

summary(show_includes=True, show_non_network=True)
Get a pretty-printed summary of the complete NeuroMLDocument.

This includes information on the various Components included in the NeuroMLDocument: networks, cells,

1.3. API documentation 49

libNeuroML Documentation, Release 0.3.1

projections, synapses, and so on.

OpenState

class neuroml.nml.nml.OpenState(neuro_lex_id=None, id=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.Base

OpenState – A KSState with relativeConductance of 1

Parameters relativeConductance (none) –

Parameter

class neuroml.nml.nml.Parameter(name=None, dimension=None, description=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.NamedDimensionalType

Path

class neuroml.nml.nml.Path(from_=None, to=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

Path – Include all the segment s between those specified by from and to , inclusive

PinskyRinzelCA3Cell

class neuroml.nml.nml.PinskyRinzelCA3Cell(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, i_soma=None,
i_dend=None, gc=None, g_ls=None, g_ld=None,
g_na=None, g_kdr=None, g_ca=None, g_kahp=None,
g_kc=None, g_nmda=None, g_ampa=None, e_na=None,
e_ca=None, e_k=None, e_l=None, qd0=None, pp=None,
alphac=None, betac=None, cm=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.BaseCell

PinskyRinzelCA3Cell – Reduced CA3 cell model from Pinsky and Rinzel 1994. See https://github.com/
OpenSourceBrain/PinskyRinzelModel

Parameters

• iSoma (currentDensity) –

• iDend (currentDensity) –

• gLs (conductanceDensity) –

• gLd (conductanceDensity) –

• gNa (conductanceDensity) –

• gKdr (conductanceDensity) –

• gCa (conductanceDensity) –

• gKahp (conductanceDensity) –

50 Chapter 1. User guide

https://github.com/OpenSourceBrain/PinskyRinzelModel
https://github.com/OpenSourceBrain/PinskyRinzelModel

libNeuroML Documentation, Release 0.3.1

• gKC (conductanceDensity) –

• gc (conductanceDensity) –

• eNa (voltage) –

• eCa (voltage) –

• eK (voltage) –

• eL (voltage) –

• pp (none) –

• cm (specificCapacitance) –

• alphac (none) –

• betac (none) –

• gNmda (conductanceDensity) –

• gAmpa (conductanceDensity) –

• qd0 (none) –

PlasticityMechanism

class neuroml.nml.nml.PlasticityMechanism(type=None, init_release_prob=None, tau_rec=None,
tau_fac=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

Point3DWithDiam

class neuroml.nml.nml.Point3DWithDiam(x=None, y=None, z=None, diameter=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

Point3DWithDiam – Base type for ComponentTypes which specify an (x, y, z) coordinate along with a diameter.
Note: no dimension used in the attributes for these coordinates! These are assumed to have dimension micrometer
(10^-6 m). This is due to micrometers being the default option for the majority of neuronal morphology formats,
and dimensions are omitted here to facilitate reading and writing of morphologies in NeuroML.

Parameters

• x (none) – x coordinate of the point. Note: no dimension used, see description of
point3DWithDiam for details.

• y (none) – y coordinate of the ppoint. Note: no dimension used, see description of
point3DWithDiam for details.

• z (none) – z coordinate of the ppoint. Note: no dimension used, see description of
point3DWithDiam for details.

• diameter (none) – Diameter of the ppoint. Note: no dimension used, see description of
point3DWithDiam for details.

distance_to(other_3d_point)
Find the distance between this point and another.

Parameters other_3d_point (Point3DWithDiam) – other 3D point to calculate distance to

1.3. API documentation 51

libNeuroML Documentation, Release 0.3.1

Returns distance between the two points

Return type float

PoissonFiringSynapse

class neuroml.nml.nml.PoissonFiringSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, average_rate=None,
synapse=None, spike_target=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Standalone

PoissonFiringSynapse – Poisson spike generator firing at averageRate, which is connected to single synapse that
is triggered every time a spike is generated, producing an input current. See also transientPoissonFiringSynapse
.

Parameters averageRate (per_time) – The average rate at which spikes are emitted

Population

class neuroml.nml.nml.Population(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, component=None, size=None,
type=None, extracellular_properties=None, layout=None,
instances=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

Population – A population of components, with just one parameter for the size, i. e. number of components
to create. Note: quite often this is used with type= populationList which means the size is determined by the
number of instance s (with location s) in the list. The size attribute is still set, and there will be a validation
error if this does not match the number in the list.

Parameters size (none) – Number of instances of this Component to create when the population
is instantiated

exportHdf5(h5file, h5Group)
Export to HDF5 file.

get_size()

Projection

class neuroml.nml.nml.Projection(neuro_lex_id=None, id=None, presynaptic_population=None,
postsynaptic_population=None, synapse=None, connections=None,
connection_wds=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseProjection

Projection – Projection from one population, presynapticPopulation to another, postsynapticPopulation,
through synapse. Contains lists of connection or connectionWD elements.

exportHdf5(h5file, h5Group)
Export to HDF5 file.

52 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

Property

class neuroml.nml.nml.Property(tag=None, value=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

Property – A property (a tag and value pair), which can be on any baseStandalone either as a direct child, or
within an Annotation . Generally something which helps the visual display or facilitates simulation of a Compo-
nent, but is not a core physiological property. Common examples include: numberInternalDivisions, equivalent
of nseg in NEURON; radius, for a radius to use in graphical displays for abstract cells (i. e. without defined
morphologies); color, the color to use for a Population or populationList of cells; recommended_dt_ms,
the recommended timestep to use for simulating a Network , recommended_duration_ms the recommended
duration to use when running a Network

ProximalDetails

class neuroml.nml.nml.ProximalDetails(translation_start=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

PulseGenerator

class neuroml.nml.nml.PulseGenerator(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, delay=None, duration=None,
amplitude=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

PulseGenerator – Generates a constant current pulse of a certain amplitude for a specified duration after a
delay. Scaled by weight, if set

Parameters

• delay (time) – Delay before change in current. Current is zero prior to this.

• duration (time) – Duration for holding current at amplitude. Current is zero after delay +
duration.

• amplitude (current) – Amplitude of current pulse

PulseGeneratorDL

class neuroml.nml.nml.PulseGeneratorDL(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, delay=None,
duration=None, amplitude=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Standalone

PulseGeneratorDL – Dimensionless equivalent of pulseGenerator . Generates a constant current pulse of a
certain amplitude for a specified duration after a delay. Scaled by weight, if set

Parameters

• delay (time) – Delay before change in current. Current is zero prior to this.

• duration (time) – Duration for holding current at amplitude. Current is zero after delay +
duration.

• amplitude (none) – Amplitude of current pulse

1.3. API documentation 53

libNeuroML Documentation, Release 0.3.1

Q10ConductanceScaling

class neuroml.nml.nml.Q10ConductanceScaling(q10_factor=None, experimental_temp=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

Q10ConductanceScaling – A value for the conductance scaling which varies as a standard function of the differ-
ence between the current temperature, temperature, and the temperature at which the conductance was originally
determined, experimentalTemp

Parameters

• q10Factor (none) –

• experimentalTemp (temperature) –

Q10Settings

class neuroml.nml.nml.Q10Settings(type=None, fixed_q10=None, q10_factor=None,
experimental_temp=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

RampGenerator

class neuroml.nml.nml.RampGenerator(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, delay=None, duration=None,
start_amplitude=None, finish_amplitude=None,
baseline_amplitude=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

RampGenerator – Generates a ramping current after a time delay, for a fixed duration. During this time the
current steadily changes from startAmplitude to finishAmplitude. Scaled by weight, if set

Parameters

• delay (time) – Delay before change in current. Current is baselineAmplitude prior to this.

• duration (time) – Duration for holding current at amplitude. Current is baselineAmplitude
after delay + duration.

• startAmplitude (current) – Amplitude of linearly varying current at time delay

• finishAmplitude (current) – Amplitude of linearly varying current at time delay + du-
ration

• baselineAmplitude (current) – Amplitude of current before time delay, and after time
delay + duration

54 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

RampGeneratorDL

class neuroml.nml.nml.RampGeneratorDL(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, delay=None, duration=None,
start_amplitude=None, finish_amplitude=None,
baseline_amplitude=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

RampGeneratorDL – Dimensionless equivalent of rampGenerator . Generates a ramping current after a time
delay, for a fixed duration. During this time the dimensionless current steadily changes from startAmplitude
to finishAmplitude. Scaled by weight, if set

Parameters

• delay (time) – Delay before change in current. Current is baselineAmplitude prior to this.

• duration (time) – Duration for holding current at amplitude. Current is baselineAmplitude
after delay + duration.

• startAmplitude (none) – Amplitude of linearly varying current at time delay

• finishAmplitude (none) – Amplitude of linearly varying current at time delay + duration

• baselineAmplitude (none) – Amplitude of current before time delay, and after time delay
+ duration

RandomLayout

class neuroml.nml.nml.RandomLayout(number=None, regions=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

ReactionScheme

class neuroml.nml.nml.ReactionScheme(neuro_lex_id=None, id=None, source=None, type=None,
anytypeobjs_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

Region

class neuroml.nml.nml.Region(neuro_lex_id=None, id=None, spaces=None, anytypeobjs_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

Region – Initial attempt to specify 3D region for placing cells. Work in progress. . .

1.3. API documentation 55

libNeuroML Documentation, Release 0.3.1

Requirement

class neuroml.nml.nml.Requirement(name=None, dimension=None, description=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.NamedDimensionalType

Resistivity

class neuroml.nml.nml.Resistivity(value=None, segment_groups='all', gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

Resistivity – The resistivity, or specific axial resistance, of the cytoplasm

Parameters value (resistivity) –

validate_Nml2Quantity_resistivity(value)

validate_Nml2Quantity_resistivity_patterns_ =
[['^(-?([0-9]*(\\.[0-9]+)?)([eE]-?[0-9]+)?[\\s]*(ohm_cm|kohm_cm|ohm_m))$']]

ReverseTransition

class neuroml.nml.nml.ReverseTransition(neuro_lex_id=None, id=None, from_=None, to=None,
anytypeobjs_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

ReverseTransition – A reverse only KSTransition for a gateKS which specifies a rate (type baseHHRate)
which follows one of the standard Hodgkin Huxley forms (e. g. HHExpRate , HHSigmoidRate , HHExpLin-
earRate

Segment

class neuroml.nml.nml.Segment(neuro_lex_id=None, id=None, name=None, parent=None, proximal=None,
distal=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseNonNegativeIntegerId

Segment – A segment defines the smallest unit within a possibly branching structure (morphology), such as
a dendrite or axon. Its id should be a nonnegative integer (usually soma/root = 0). Its end points are given by
the proximal and distal points. The proximal point can be omitted, usually because it is the same as a point on
the parent segment, see proximal for details. parent specifies the parent segment. The first segment of a cell (
with no parent) usually represents the soma. The shape is normally a cylinder (radii of the proximal and distal
equal, but positions different) or a conical frustum (radii and positions different). If the x, y, x positions of
the proximal and distal are equal, the segment can be interpreted as a sphere, and in this case the radii of these
points must be equal. NOTE: LEMS does not yet support multicompartmental modelling, so the Dynamics here
is only appropriate for single compartment modelling.

property length
Get the length of the segment.

Returns length of the segment

Return type float

property surface_area
Get the surface area of the segment.

56 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

Returns surface area of segment

Return type float

property volume
Get the volume of the segment.

Returns volume of segment

Return type float

SegmentEndPoint

class neuroml.nml.nml.SegmentEndPoint(segments=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

SegmentGroup

class neuroml.nml.nml.SegmentGroup(neuro_lex_id=None, id=None, notes=None, properties=None,
annotation=None, members=None, includes=None, paths=None,
sub_trees=None, inhomogeneous_parameters=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

SegmentGroup – A method to describe a group of segment s in a morphology , e. g. soma_group, den-
drite_group, axon_group. While a name is useful to describe the group, the neuroLexId attribute can be used
to explicitly specify the meaning of the group, e. g. sao1044911821 for ‘Neuronal Cell Body’, sao1211023249
for ‘Dendrite’. The segment s in this group can be specified as: a list of individual member segments; a path
, all of the segments along which should be included; a subTree of the cell to include; other segmentGroups to
include (so all segments from those get included here). An inhomogeneousParameter can be defined on the
region of the cell specified by this group (see variableParameter for usage).

SegmentParent

class neuroml.nml.nml.SegmentParent(segments=None, fraction_along='1', gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

SilentSynapse

class neuroml.nml.nml.SilentSynapse(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.BaseSynapse

SilentSynapse – Dummy synapse which emits no current. Used as presynaptic endpoint for analog synaptic
connection.

1.3. API documentation 57

libNeuroML Documentation, Release 0.3.1

SineGenerator

class neuroml.nml.nml.SineGenerator(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, delay=None, phase=None,
duration=None, amplitude=None, period=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

SineGenerator – Generates a sinusoidally varying current after a time delay, for a fixed duration. The period
and maximum amplitude of the current can be set as well as the phase at which to start. Scaled by weight, if
set

Parameters

• phase (none) – Phase (between 0 and 2*pi) at which to start the varying current (i. e. at
time given by delay)

• delay (time) – Delay before change in current. Current is zero prior to this.

• duration (time) – Duration for holding current at amplitude. Current is zero after delay +
duration.

• amplitude (current) – Maximum amplitude of current

• period (time) – Time period of oscillation

SineGeneratorDL

class neuroml.nml.nml.SineGeneratorDL(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, delay=None, phase=None,
duration=None, amplitude=None, period=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

SineGeneratorDL – Dimensionless equivalent of sineGenerator . Generates a sinusoidally varying current after
a time delay, for a fixed duration. The period and maximum amplitude of the current can be set as well as the
phase at which to start. Scaled by weight, if set

Parameters

• phase (none) – Phase (between 0 and 2*pi) at which to start the varying current (i. e. at
time given by delay)

• delay (time) – Delay before change in current. Current is zero prior to this.

• duration (time) – Duration for holding current at amplitude. Current is zero after delay +
duration.

• amplitude (none) – Maximum amplitude of current

• period (time) – Time period of oscillation

58 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

Space

class neuroml.nml.nml.Space(neuro_lex_id=None, id=None, based_on=None, structure=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

SpaceStructure

class neuroml.nml.nml.SpaceStructure(x_spacing=None, y_spacing=None, z_spacing=None, x_start=0,
y_start=0, z_start=0, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

Species

class neuroml.nml.nml.Species(id=None, concentration_model=None, ion=None,
initial_concentration=None, initial_ext_concentration=None,
segment_groups='all', gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

Species – Description of a chemical species identified by ion, which has internal, concentration, and external,
extConcentration values for its concentration

:param initialConcentration : :type initialConcentration: concentration :param initialExtConcentration: :type
initialExtConcentration: concentration

SpecificCapacitance

class neuroml.nml.nml.SpecificCapacitance(value=None, segment_groups='all', gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

SpecificCapacitance – Capacitance per unit area

Parameters value (specificCapacitance) –

Spike

class neuroml.nml.nml.Spike(neuro_lex_id=None, id=None, time=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.BaseNonNegativeIntegerId

Spike – Emits a single spike at the specified time

Parameters time (time) – Time at which to emit one spike event

1.3. API documentation 59

libNeuroML Documentation, Release 0.3.1

SpikeArray

class neuroml.nml.nml.SpikeArray(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, spikes=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Standalone

SpikeArray – Set of spike ComponentTypes, each emitting one spike at a certain time. Can be used to feed a
predetermined spike train into a cell

SpikeGenerator

class neuroml.nml.nml.SpikeGenerator(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, period=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

SpikeGenerator – Simple generator of spikes at a regular interval set by period

Parameters period (time) – Time between spikes. The first spike will be emitted after this time.

SpikeGeneratorPoisson

class neuroml.nml.nml.SpikeGeneratorPoisson(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, average_rate=None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

SpikeGeneratorPoisson – Generator of spikes whose ISI is distributed according to an exponential PDF with
scale: 1 / averageRate

Parameters averageRate (per_time) – The average rate at which spikes are emitted

SpikeGeneratorRandom

class neuroml.nml.nml.SpikeGeneratorRandom(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, max_isi=None,
min_isi=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

SpikeGeneratorRandom – Generator of spikes with a random interspike interval of at least minISI and at most
maxISI

Parameters

• maxISI (time) – Maximum interspike interval

• minISI (time) – Minimum interspike interval

60 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

SpikeGeneratorRefPoisson

class neuroml.nml.nml.SpikeGeneratorRefPoisson(neuro_lex_id=None, id=None, metaid=None,
notes=None, properties=None, annotation=None,
average_rate=None, minimum_isi=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.SpikeGeneratorPoisson

SpikeGeneratorRefPoisson – Generator of spikes whose ISI distribution is the maximum entropy distribution
over [minimumISI, +infinity) with mean: 1 / averageRate

Parameters

• minimumISI (time) – The minimum interspike interval

• averageRate (per_time) – The average rate at which spikes are emitted

SpikeSourcePoisson

class neuroml.nml.nml.SpikeSourcePoisson(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, start=None,
duration=None, rate=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Standalone

SpikeSourcePoisson – Spike source, generating spikes according to a Poisson process.

Parameters

• start (time) –

• duration (time) –

• rate (per_time) –

SpikeThresh

class neuroml.nml.nml.SpikeThresh(value=None, segment_groups='all', gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

SpikeThresh – Membrane potential at which to emit a spiking event. Note, usually the spiking event will not be
emitted again until the membrane potential has fallen below this value and rises again to cross it in a positive
direction

Parameters value (voltage) –

Standalone

class neuroml.nml.nml.Standalone(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Base

Standalone – Elements which can stand alone and be referenced by id, e.g. cell, morphology.

1.3. API documentation 61

libNeuroML Documentation, Release 0.3.1

StateVariable

class neuroml.nml.nml.StateVariable(name=None, dimension=None, description=None, exposure=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.NamedDimensionalVariable

SubTree

class neuroml.nml.nml.SubTree(from_=None, to=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

SubTree – Include all the segment s distal to that specified by from in the segmentGroup

SynapticConnection

class neuroml.nml.nml.SynapticConnection(from_=None, to=None, synapse=None, destination=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

SynapticConnection – Explicit event connection between named components, which gets processed via a new
instance of a synapse component which is created on the target component

TauInfTransition

class neuroml.nml.nml.TauInfTransition(neuro_lex_id=None, id=None, from_=None, to=None,
steady_state=None, time_course=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Base

TauInfTransition – KS Transition specified in terms of time constant tau and steady state inf

TimeDerivative

class neuroml.nml.nml.TimeDerivative(variable=None, value=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

TimedSynapticInput

class neuroml.nml.nml.TimedSynapticInput(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, synapse=None,
spike_target=None, spikes=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Standalone

TimedSynapticInput – Spike array connected to a single synapse, producing a current triggered by each spike
in the array.

62 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

TransientPoissonFiringSynapse

class neuroml.nml.nml.TransientPoissonFiringSynapse(neuro_lex_id=None, id=None, metaid=None,
notes=None, properties=None,
annotation=None, average_rate=None,
delay=None, duration=None, synapse=None,
spike_target=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Standalone

TransientPoissonFiringSynapse – Poisson spike generator firing at averageRate after a delay and for a duration,
connected to single synapse that is triggered every time a spike is generated, providing an input current. Similar
to ComponentType poissonFiringSynapse .

Parameters

• averageRate (per_time) –

• delay (time) –

• duration (time) –

UnstructuredLayout

class neuroml.nml.nml.UnstructuredLayout(number=None, gds_collector_=None, **kwargs_)
Bases: neuroml.nml.nml.GeneratedsSuper

VariableParameter

class neuroml.nml.nml.VariableParameter(parameter=None, segment_groups=None,
inhomogeneous_value=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.GeneratedsSuper

VariableParameter – Specifies a parameter (e. g. condDensity) which can vary its value across a segment-
Group. The value is calculated from value attribute of the inhomogeneousValue subelement. This element
is normally a child of channelDensityNonUniform , channelDensityNonUniformNernst or channelDensi-
tyNonUniformGHK and is used to calculate the value of the conductance, etc. which will vary on different
parts of the cell. The segmentGroup specified here needs to define an inhomogeneousParameter (referenced
from inhomogeneousParameter in the inhomogeneousValue), which calculates a variable (e. g. p) varying
across the cell (e. g. based on the path length from soma), which is then used in the value attribute of the
inhomogeneousValue (so for example condDensity = f(p))

VoltageClamp

class neuroml.nml.nml.VoltageClamp(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, delay=None, duration=None,
target_voltage=None, simple_series_resistance=None,
gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.Standalone

VoltageClamp – Voltage clamp. Applies a variable current i to try to keep parent at targetVoltage. Not yet fully
tested!!! Consider using voltageClampTriple!!

Parameters

1.3. API documentation 63

libNeuroML Documentation, Release 0.3.1

• delay (time) – Delay before change in current. Current is zero prior to this.

• duration (time) – Duration for attempting to keep parent at targetVoltage. Current is zero
after delay + duration.

• targetVoltage (voltage) – Current will be applied to try to get parent to this target voltage

• simpleSeriesResistance (resistance) – Current will be calculated by the difference
in voltage between the target and parent, divided by this value

VoltageClampTriple

class neuroml.nml.nml.VoltageClampTriple(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, active=None,
delay=None, duration=None, conditioning_voltage=None,
testing_voltage=None, return_voltage=None,
simple_series_resistance=None, gds_collector_=None,
**kwargs_)

Bases: neuroml.nml.nml.Standalone

VoltageClampTriple – Voltage clamp with 3 clamp levels. Applies a variable current i (through simpleSeries-
Resistance) to try to keep parent cell at conditioningVoltage until time delay, testingVoltage until delay +
duration, and returnVoltage afterwards. Only enabled if active = 1.

Parameters

• active (none) – Whether the voltage clamp is active (1) or inactive (0).

• delay (time) – Delay before switching from conditioningVoltage to testingVoltage.

• duration (time) – Duration to hold at testingVoltage.

• conditioningVoltage (voltage) – Target voltage before time delay

• testingVoltage (voltage) – Target voltage between times delay and delay + duration

• returnVoltage (voltage) – Target voltage after time duration

• simpleSeriesResistance (resistance) – Current will be calculated by the difference
in voltage between the target and parent, divided by this value

basePyNNCell

class neuroml.nml.nml.basePyNNCell(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, cm=None, i_offset=None,
tau_syn_E=None, tau_syn_I=None, v_init=None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.BaseCell

basePyNNCell – Base type of any PyNN standard cell model. Note: membrane potential v has dimen-
sions voltage, but all other parameters are dimensionless. This is to facilitate translation to and from PyNN
scripts in Python, where these parameters have implicit units, see http://neuralensemble.org/trac/PyNN/wiki/
StandardModels

Parameters

• cm (none) –

• i_offset (none) –

64 Chapter 1. User guide

http://neuralensemble.org/trac/PyNN/wiki/StandardModels
http://neuralensemble.org/trac/PyNN/wiki/StandardModels

libNeuroML Documentation, Release 0.3.1

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

basePyNNIaFCell

class neuroml.nml.nml.basePyNNIaFCell(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, cm=None, i_offset=None,
tau_syn_E=None, tau_syn_I=None, v_init=None, tau_m=None,
tau_refrac=None, v_reset=None, v_rest=None, v_thresh=None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.basePyNNCell

basePyNNIaFCell – Base type of any PyNN standard integrate and fire model

Parameters

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

basePyNNIaFCondCell

class neuroml.nml.nml.basePyNNIaFCondCell(neuro_lex_id=None, id=None, metaid=None, notes=None,
properties=None, annotation=None, cm=None,
i_offset=None, tau_syn_E=None, tau_syn_I=None,
v_init=None, tau_m=None, tau_refrac=None, v_reset=None,
v_rest=None, v_thresh=None, e_rev_E=None, e_rev_I=None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: neuroml.nml.nml.basePyNNIaFCell

basePyNNIaFCondCell – Base type of conductance based PyNN IaF cell models

Parameters

• e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

1.3. API documentation 65

libNeuroML Documentation, Release 0.3.1

• e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

1.3.2 loaders Module

class neuroml.loaders.ArrayMorphLoader
Bases: object

classmethod load(filepath)
Right now this load method isn’t done in a very nice way. TODO: Complete refactoring.

class neuroml.loaders.NeuroMLHdf5Loader
Bases: object

classmethod load(src, optimized=False)

class neuroml.loaders.NeuroMLLoader
Bases: object

classmethod load(src)

class neuroml.loaders.SWCLoader
Bases: object

WARNING: Class defunct

classmethod load_swc_single(src, name=None)

neuroml.loaders.print_(text, verbose=True)

neuroml.loaders.read_neuroml2_file(nml2_file_name, include_includes=False, verbose=False,
already_included=[], print_method=<function print_>,
optimized=False)

neuroml.loaders.read_neuroml2_string(nml2_string, include_includes=False, verbose=False,
already_included=[], print_method=<function print_>,
optimized=False, base_path=None)

66 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

1.3.3 writers Module

class neuroml.writers.ArrayMorphWriter
Bases: object

For now just testing a simple method which can write a morphology, not a NeuroMLDocument.

classmethod write(data, filepath)

class neuroml.writers.NeuroMLHdf5Writer
Bases: object

classmethod write(nml_doc, h5_file_name, embed_xml=True, compress=True)

class neuroml.writers.NeuroMLWriter
Bases: object

classmethod write(nmldoc, file, close=True)
Writes from NeuroMLDocument to nml file in future can implement from other types via chain of respon-
sibility pattern.

1.3.4 utils Module

Utilities for checking generated code

neuroml.utils.add_all_to_document(nml_doc_src, nml_doc_tgt, verbose=False)
Add all members of the source NeuroML document to the target NeuroML document.

Parameters

• nml_doc_src (NeuroMLDocument) – source NeuroML document to copy from

• nml_doc_tgt (NeuroMLDocument) – target NeuroML document to copy to

• verbose (bool) – control verbosity of working

Raises Exception – if a member could not be copied.

neuroml.utils.append_to_element(parent, child)
Append a child element to a parent Component

Parameters

• parent (Object) – parent NeuroML component to add element to

• child (Object) – child NeuroML component to be added to parent

Raises Exception – when the child could not be added to the parent

neuroml.utils.get_summary(nml_file_name)
Get a summary of the given NeuroML file.

Parameters nml_file_name (str) – name of NeuroML file to get summary of

Returns summary of provided file

Return type str

neuroml.utils.has_segment_fraction_info(connections)
Check if connections include fraction information

Parameters connections (list) – list of connection objects

Returns True if connections include fragment information, otherwise False

1.3. API documentation 67

libNeuroML Documentation, Release 0.3.1

Return type Boolean

neuroml.utils.is_valid_neuroml2(file_name)
Check if a file is valid NeuroML2.

Parameters file_name (str) – name of NeuroML file to check

Returns True if file is valid, False if not.

Return type Boolean

neuroml.utils.main()

neuroml.utils.print_summary(nml_file_name)
Print a summary of the NeuroML model in the given file.

Parameters nml_file_name (str) – name of NeuroML file to print summary of

neuroml.utils.validate_neuroml2(file_name)
Validate a NeuroML document against the NeuroML schema specification.

Parameters file_name (str) – name of NeuroML file to validate.

1.3.5 arraymorph Module

1.4 Examples

The examples in this section are intended to give in depth overviews of how to accomplish specific tasks with libNeu-
roML.

These examples are located in the neuroml/examples directory and can be tested to confirm they work by running the
run_all.py script.

Examples

• Examples

– Creating a NeuroML morphology

– Loading and modifying a file

– Building a network

– Building a 3D network

– Ion channels

– PyNN models

– Synapses

– Working with JSON serialization

– Working with arraymorphs

– Working with Izhikevich Cells

68 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

1.4.1 Creating a NeuroML morphology

"""
Example of connecting segments together to create a
multicompartmental model of a cell.
"""

import neuroml
import neuroml.writers as writers

p = neuroml.Point3DWithDiam(x=0, y=0, z=0, diameter=50)
d = neuroml.Point3DWithDiam(x=50, y=0, z=0, diameter=50)
soma = neuroml.Segment(proximal=p, distal=d)
soma.name = "Soma"
soma.id = 0

Make an axon with 100 compartments:

parent = neuroml.SegmentParent(segments=soma.id)
parent_segment = soma
axon_segments = []
seg_id = 1

for i in range(100):
p = neuroml.Point3DWithDiam(

x=parent_segment.distal.x,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1,

)

d = neuroml.Point3DWithDiam(
x=parent_segment.distal.x + 10,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1,

)

axon_segment = neuroml.Segment(proximal=p, distal=d, parent=parent)

axon_segment.id = seg_id

axon_segment.name = "axon_segment_" + str(axon_segment.id)

now reset everything:
parent = neuroml.SegmentParent(segments=axon_segment.id)
parent_segment = axon_segment
seg_id += 1

axon_segments.append(axon_segment)

test_morphology = neuroml.Morphology()
test_morphology.segments.append(soma)

(continues on next page)

1.4. Examples 69

libNeuroML Documentation, Release 0.3.1

(continued from previous page)

test_morphology.segments += axon_segments
test_morphology.id = "TestMorphology"

cell = neuroml.Cell()
cell.name = "TestCell"
cell.id = "TestCell"
cell.morphology = test_morphology

doc = neuroml.NeuroMLDocument(id="TestNeuroMLDocument")

doc.cells.append(cell)

nml_file = "tmp/testmorphwrite.nml"

writers.NeuroMLWriter.write(doc, nml_file)

print("Written morphology file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

1.4.2 Loading and modifying a file

"""
In this example an axon is built, a morphology is loaded, the axon is
then connected to the loadeed morphology.
"""

import neuroml
import neuroml.loaders as loaders
import neuroml.writers as writers

fn = "./test_files/Purk2M9s.nml"
doc = loaders.NeuroMLLoader.load(fn)
print("Loaded morphology file from: " + fn)

get the parent segment:
parent_segment = doc.cells[0].morphology.segments[0]

parent = neuroml.SegmentParent(segments=parent_segment.id)

make an axon:
seg_id = 5000 # need a way to get a unique id from a morphology
axon_segments = []
for i in range(10):

p = neuroml.Point3DWithDiam(
(continues on next page)

70 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

(continued from previous page)

x=parent_segment.distal.x,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1,

)

d = neuroml.Point3DWithDiam(
x=parent_segment.distal.x + 10,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1,

)

axon_segment = neuroml.Segment(proximal=p, distal=d, parent=parent)

axon_segment.id = seg_id

axon_segment.name = "axon_segment_" + str(axon_segment.id)

now reset everything:
parent = neuroml.SegmentParent(segments=axon_segment.id)
parent_segment = axon_segment
seg_id += 1

axon_segments.append(axon_segment)

doc.cells[0].morphology.segments += axon_segments

nml_file = "./tmp/modified_morphology.nml"

writers.NeuroMLWriter.write(doc, nml_file)

print("Saved modified morphology file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

1.4.3 Building a network

"""

Example to build a full spiking IaF network
through libNeuroML, save it as XML and validate it

"""

(continues on next page)

1.4. Examples 71

libNeuroML Documentation, Release 0.3.1

(continued from previous page)

from neuroml import NeuroMLDocument
from neuroml import IafCell
from neuroml import Network
from neuroml import ExpOneSynapse
from neuroml import Population
from neuroml import PulseGenerator
from neuroml import ExplicitInput
from neuroml import SynapticConnection
import neuroml.writers as writers
from random import random

nml_doc = NeuroMLDocument(id="IafNet")

IafCell0 = IafCell(
id="iaf0",
C="1.0 nF",
thresh="-50mV",
reset="-65mV",
leak_conductance="10 nS",
leak_reversal="-65mV",

)

nml_doc.iaf_cells.append(IafCell0)

IafCell1 = IafCell(
id="iaf1",
C="1.0 nF",
thresh="-50mV",
reset="-65mV",
leak_conductance="20 nS",
leak_reversal="-65mV",

)

nml_doc.iaf_cells.append(IafCell1)

syn0 = ExpOneSynapse(id="syn0", gbase="65nS", erev="0mV", tau_decay="3ms")

nml_doc.exp_one_synapses.append(syn0)

net = Network(id="IafNet")

nml_doc.networks.append(net)

size0 = 5
pop0 = Population(id="IafPop0", component=IafCell0.id, size=size0)

net.populations.append(pop0)

size1 = 5
pop1 = Population(id="IafPop1", component=IafCell0.id, size=size1)

(continues on next page)

72 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

(continued from previous page)

net.populations.append(pop1)

prob_connection = 0.5

for pre in range(0, size0):

pg = PulseGenerator(
id="pulseGen_%i" % pre,
delay="0ms",
duration="100ms",
amplitude="%f nA" % (0.1 * random()),

)

nml_doc.pulse_generators.append(pg)

exp_input = ExplicitInput(target="%s[%i]" % (pop0.id, pre), input=pg.id)

net.explicit_inputs.append(exp_input)

for post in range(0, size1):
fromxx is used since from is Python keyword
if random() <= prob_connection:

syn = SynapticConnection(
from_="%s[%i]" % (pop0.id, pre),
synapse=syn0.id,
to="%s[%i]" % (pop1.id, post),

)
net.synaptic_connections.append(syn)

nml_file = "tmp/testnet.nml"
writers.NeuroMLWriter.write(nml_doc, nml_file)

print("Written network file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

1.4. Examples 73

libNeuroML Documentation, Release 0.3.1

1.4.4 Building a 3D network

"""

Example to build a full spiking IaF network throught libNeuroML & save it as XML &␣
→˓validate it

"""

from neuroml import NeuroMLDocument
from neuroml import Network
from neuroml import ExpOneSynapse
from neuroml import Population
from neuroml import Property
from neuroml import Cell
from neuroml import Location
from neuroml import Instance
from neuroml import Morphology
from neuroml import Point3DWithDiam
from neuroml import Segment
from neuroml import SegmentParent
from neuroml import Projection
from neuroml import Connection

import neuroml.writers as writers
from random import random

soma_diam = 10
soma_len = 10
dend_diam = 2
dend_len = 10
dend_num = 10

def generateRandomMorphology():

morphology = Morphology()

p = Point3DWithDiam(x=0, y=0, z=0, diameter=soma_diam)
d = Point3DWithDiam(x=soma_len, y=0, z=0, diameter=soma_diam)
soma = Segment(proximal=p, distal=d, name="Soma", id=0)

morphology.segments.append(soma)
parent_seg = soma

for dend_id in range(0, dend_num):

p = Point3DWithDiam(x=d.x, y=d.y, z=d.z, diameter=dend_diam)
d = Point3DWithDiam(x=p.x, y=p.y + dend_len, z=p.z, diameter=dend_diam)
dend = Segment(proximal=p, distal=d, name="Dend_%i" % dend_id, id=1 + dend_id)
dend.parent = SegmentParent(segments=parent_seg.id)
parent_seg = dend

(continues on next page)

74 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

(continued from previous page)

morphology.segments.append(dend)

morphology.id = "TestMorphology"

return morphology

def run():

cell_num = 10
x_size = 500
y_size = 500
z_size = 500

nml_doc = NeuroMLDocument(id="Net3DExample")

syn0 = ExpOneSynapse(id="syn0", gbase="65nS", erev="0mV", tau_decay="3ms")
nml_doc.exp_one_synapses.append(syn0)

net = Network(id="Net3D")
nml_doc.networks.append(net)

proj_count = 0
conn_count = 0

for cell_id in range(0, cell_num):

cell = Cell(id="Cell_%i" % cell_id)

cell.morphology = generateRandomMorphology()

nml_doc.cells.append(cell)

pop = Population(
id="Pop_%i" % cell_id, component=cell.id, type="populationList"

)
net.populations.append(pop)
pop.properties.append(Property(tag="color", value="1 0 0"))

inst = Instance(id="0")
pop.instances.append(inst)

inst.location = Location(
x=str(x_size * random()), y=str(y_size * random()), z=str(z_size * random())

)

prob_connection = 0.5
for post in range(0, cell_num):

if post is not cell_id and random() <= prob_connection:

from_pop = "Pop_%i" % cell_id
to_pop = "Pop_%i" % post

(continues on next page)

1.4. Examples 75

libNeuroML Documentation, Release 0.3.1

(continued from previous page)

pre_seg_id = 0
post_seg_id = 1

projection = Projection(
id="Proj_%i" % proj_count,
presynaptic_population=from_pop,
postsynaptic_population=to_pop,
synapse=syn0.id,

)
net.projections.append(projection)
connection = Connection(

id=proj_count,
pre_cell_id="%s[%i]" % (from_pop, 0),
pre_segment_id=pre_seg_id,
pre_fraction_along=random(),
post_cell_id="%s[%i]" % (to_pop, 0),
post_segment_id=post_seg_id,
post_fraction_along=random(),

)

projection.connections.append(connection)
proj_count += 1
net.synaptic_connections.append(SynapticConnection(from_="%s[%i]"

→˓%(from_pop,0), to="%s[%i]"%(to_pop,0)))

####### Write to file ######

nml_file = "tmp/net3d.nml"
writers.NeuroMLWriter.write(nml_doc, nml_file)

print("Written network file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

run()

76 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

1.4.5 Ion channels

"""
Generating a Hodgkin-Huxley Ion Channel and writing it to NeuroML
"""

import neuroml
import neuroml.writers as writers

chan = neuroml.IonChannelHH(
id="na",
conductance="10pS",
species="na",
notes="This is an example voltage-gated Na channel",

)

m_gate = neuroml.GateHHRates(id="m", instances="3")
h_gate = neuroml.GateHHRates(id="h", instances="1")

m_gate.forward_rate = neuroml.HHRate(
type="HHExpRate", rate="0.07per_ms", midpoint="-65mV", scale="-20mV"

)

m_gate.reverse_rate = neuroml.HHRate(
type="HHSigmoidRate", rate="1per_ms", midpoint="-35mV", scale="10mV"

)

h_gate.forward_rate = neuroml.HHRate(
type="HHExpLinearRate", rate="0.1per_ms", midpoint="-55mV", scale="10mV"

)

h_gate.reverse_rate = neuroml.HHRate(
type="HHExpRate", rate="0.125per_ms", midpoint="-65mV", scale="-80mV"

)

chan.gate_hh_rates.append(m_gate)
chan.gate_hh_rates.append(h_gate)

doc = neuroml.NeuroMLDocument()
doc.ion_channel_hhs.append(chan)

doc.id = "ChannelMLDemo"

nml_file = "./tmp/ionChannelTest.xml"
writers.NeuroMLWriter.write(doc, nml_file)

print("Written channel file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

(continues on next page)

1.4. Examples 77

libNeuroML Documentation, Release 0.3.1

(continued from previous page)

validate_neuroml2(nml_file)

1.4.6 PyNN models

"""

Example to build a PyNN based network

"""

from neuroml import NeuroMLDocument
from neuroml import *
import neuroml.writers as writers
from random import random

######################## Build the network ####################################

nml_doc = NeuroMLDocument(id="IafNet")

pynn0 = IF_curr_alpha(
id="IF_curr_alpha_pop_IF_curr_alpha",
cm="1.0",
i_offset="0.9",
tau_m="20.0",
tau_refrac="10.0",
tau_syn_E="0.5",
tau_syn_I="0.5",
v_init="-65",
v_reset="-62.0",
v_rest="-65.0",
v_thresh="-52.0",

)
nml_doc.IF_curr_alpha.append(pynn0)

pynn1 = HH_cond_exp(
id="HH_cond_exp_pop_HH_cond_exp",
cm="0.2",
e_rev_E="0.0",
e_rev_I="-80.0",
e_rev_K="-90.0",
e_rev_Na="50.0",
e_rev_leak="-65.0",
g_leak="0.01",
gbar_K="6.0",
gbar_Na="20.0",
i_offset="0.2",
tau_syn_E="0.2",
tau_syn_I="2.0",

(continues on next page)

78 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

(continued from previous page)

v_init="-65",
v_offset="-63.0",

)
nml_doc.HH_cond_exp.append(pynn1)

pynnSynn0 = ExpCondSynapse(id="ps1", tau_syn="5", e_rev="0")
nml_doc.exp_cond_synapses.append(pynnSynn0)

nml_file = "tmp/pynn_network.xml"
writers.NeuroMLWriter.write(nml_doc, nml_file)
print("Saved to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

1.4.7 Synapses

"""

Example to create a file with multiple synapse types

"""

from neuroml import NeuroMLDocument
from neuroml import *
import neuroml.writers as writers
from random import random

nml_doc = NeuroMLDocument(id="SomeSynapses")

expOneSyn0 = ExpOneSynapse(id="ampa", tau_decay="5ms", gbase="1nS", erev="0mV")
nml_doc.exp_one_synapses.append(expOneSyn0)

expTwoSyn0 = ExpTwoSynapse(
id="gaba", tau_decay="12ms", tau_rise="3ms", gbase="1nS", erev="-70mV"

)
nml_doc.exp_two_synapses.append(expTwoSyn0)

bpSyn = BlockingPlasticSynapse(
id="blockStpSynDep", gbase="1nS", erev="0mV", tau_rise="0.1ms", tau_decay="2ms"

)
bpSyn.notes = "This is a note"
bpSyn.plasticity_mechanism = PlasticityMechanism(

type="tsodyksMarkramDepMechanism", init_release_prob="0.5", tau_rec="120 ms"
)

(continues on next page)

1.4. Examples 79

libNeuroML Documentation, Release 0.3.1

(continued from previous page)

bpSyn.block_mechanism = BlockMechanism(
type="voltageConcDepBlockMechanism",
species="mg",
block_concentration="1.2 mM",
scaling_conc="1.920544 mM",
scaling_volt="16.129 mV",

)

nml_doc.blocking_plastic_synapses.append(bpSyn)

nml_file = "tmp/synapses.xml"
writers.NeuroMLWriter.write(nml_doc, nml_file)
print("Saved to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

1.4.8 Working with JSON serialization

One thing to note is that the JSONWriter, unlike NeuroMLWriter, will serializing using array-based (Arraymorph)
representation if this has been used.

1.4.9 Working with arraymorphs

"""
Example of connecting segments together to create a
multicompartmental model of a cell.

In this case ArrayMorphology will be used rather than
Morphology - demonstrating its similarity and
ability to save in HDF5 format
"""

import neuroml
import neuroml.writers as writers
import neuroml.arraymorph as am

p = neuroml.Point3DWithDiam(x=0, y=0, z=0, diameter=50)
d = neuroml.Point3DWithDiam(x=50, y=0, z=0, diameter=50)
soma = neuroml.Segment(proximal=p, distal=d)
soma.name = "Soma"
soma.id = 0

now make an axon with 100 compartments:
(continues on next page)

80 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

(continued from previous page)

parent = neuroml.SegmentParent(segments=soma.id)
parent_segment = soma
axon_segments = []
seg_id = 1
for i in range(100):

p = neuroml.Point3DWithDiam(
x=parent_segment.distal.x,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1,

)

d = neuroml.Point3DWithDiam(
x=parent_segment.distal.x + 10,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1,

)

axon_segment = neuroml.Segment(proximal=p, distal=d, parent=parent)

axon_segment.id = seg_id

axon_segment.name = "axon_segment_" + str(axon_segment.id)

now reset everything:
parent = neuroml.SegmentParent(segments=axon_segment.id)
parent_segment = axon_segment
seg_id += 1

axon_segments.append(axon_segment)

test_morphology = am.ArrayMorphology()
test_morphology.segments.append(soma)
test_morphology.segments += axon_segments
test_morphology.id = "TestMorphology"

cell = neuroml.Cell()
cell.name = "TestCell"
cell.id = "TestCell"
cell.morphology = test_morphology

doc = neuroml.NeuroMLDocument()
doc.name = "Test neuroML document"

doc.cells.append(cell)
doc.id = "TestNeuroMLDocument"

nml_file = "tmp/arraymorph.nml"

(continues on next page)

1.4. Examples 81

libNeuroML Documentation, Release 0.3.1

(continued from previous page)

writers.NeuroMLWriter.write(doc, nml_file)

print("Written morphology file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

1.4.10 Working with Izhikevich Cells

These examples were kindly contributed by Steve Marsh

from neuroml import NeuroMLDocument
from neuroml import IzhikevichCell
from neuroml.loaders import NeuroMLLoader
from neuroml.utils import validate_neuroml2

def load_izhikevich(filename="./test_files/SingleIzhikevich.nml"):
nml_filename = filename
validate_neuroml2(nml_filename)
nml_doc = NeuroMLLoader.load(nml_filename)

iz_cells = nml_doc.izhikevich_cells
for i, iz in enumerate(iz_cells):

if isinstance(iz, IzhikevichCell):
neuron_string = "%d %s %s %s %s %s (%s)" % (

i,
iz.v0,
iz.a,
iz.b,
iz.c,
iz.d,
iz.id,

)
print(neuron_string)

else:
print("Error: Cell %d is not an IzhikevichCell" % i)

load_izhikevich()

from neuroml import NeuroMLDocument
from neuroml import IzhikevichCell
from neuroml.writers import NeuroMLWriter
from neuroml.utils import validate_neuroml2

(continues on next page)

82 Chapter 1. User guide

libNeuroML Documentation, Release 0.3.1

(continued from previous page)

def write_izhikevich(filename="./tmp/SingleIzhikevich_test.nml"):
nml_doc = NeuroMLDocument(id="SingleIzhikevich")
nml_filename = filename

iz0 = IzhikevichCell(
id="iz0", v0="-70mV", thresh="30mV", a="0.02", b="0.2", c="-65.0", d="6"

)

nml_doc.izhikevich_cells.append(iz0)

NeuroMLWriter.write(nml_doc, nml_filename)
validate_neuroml2(nml_filename)

write_izhikevich()

1.5 References

1.5. References 83

libNeuroML Documentation, Release 0.3.1

84 Chapter 1. User guide

CHAPTER

TWO

CONTRIBUTING

2.1 How to contribute

libNeuroML development happens on GitHub, so you will need a GitHub account to contribute to the repository.
Contributions are made using the standard Pull Request workflow.

2.1.1 Setting up

Please take a look at the GitHub documentation here: http://help.github.com/fork-a-repo/

To begin, please fork the repo on the GitHub website. You should now have a libNeuroML under you username. Next,
we clone our fork to get a local copy on our computer:

git clone git@github.com:_username_/libNeuroML.git

While not necessary, it is good practice to add the upstream repository as a remote that you will follow:

cd libNeuroML
git remote add upstream https://github.com/NeuralEnsemble/libNeuroML.git
git fetch upstream

You can check which branch are you following doing:

git branch -a

You should have something like:

git branch -a
* master
remotes/origin/HEAD -> origin/master
remotes/origin/master
remotes/upstream/master

85

http://help.github.com/send-pull-requests/
http://help.github.com/fork-a-repo/

libNeuroML Documentation, Release 0.3.1

2.1.2 Sync with upstream

Before starting to do some work, please check to see that you have the latest copy of the sources in your local repository:

git fetch upstream
git checkout development
git merge upstream/development

2.1.3 Working locally on a dedicated branch

Now that we have a fork, we can start making our changes to the source code. The best way to do it is to create a
branch with a descriptive name to indicate what are you working on. Generally, your will branch off from the upstream
development branch, which will contain the latest code.

For example, just for the sake of this guide, I’m going to work on issue #2.

git checkout development
git checkout -b fix-2

We can work in this branch, and make as many commits as we need to:

hack hack hack
git commit -am "some decent commit message here"

Once we have finished working, we can push the branch online to our fork:

git push origin fix-2

We can then open a pull-request to merge our fix-2 branch into upstream/development. If your code is not ready
to be included, you can update the code on your branch and any more commits you add there will be added to the Pull
Request. Members of the libNeuroML development team will then discuss your changes with you, perhaps suggest
tweaks, and then merge it when ready.

2.1.4 Continuous integration

libNeuroML uses continuous integration (Wikipedia). Each commit to the master or development branches is tested,
along with all commits to pull requests. The latest status of the continuous integration tests can be seen here on GitHub
Actions.

2.1.5 Release process

libNeuroML is part of the official NeuroML release cycle. When a new libNeuroML release is ready the following
needs to happen:

• Update version number in setup.py

• update version number in doc/conf.py

• update release number in doc/conf.py (same as version number)

• update changelog in README.md

• merge development branch with master (This should happen via pull request - do not do the merge yourself even
if you are an owner of the repository.

86 Chapter 2. Contributing

https://en.wikipedia.org/wiki/Continuous_integration
https://github.com/NeuralEnsemble/libNeuroML/actions
https://github.com/NeuralEnsemble/libNeuroML/actions

libNeuroML Documentation, Release 0.3.1

• push latest release to PyPi

More information on the NeuroML release process can be found on the NeuroML documentation page.

2.2 Regenerating documentation

Please create a virtual environment and use the requirements.txt file to install the necessary bits.

In most cases, running make html should be sufficient to regenerate the documentation. However, if any changes to
nml.py have been made, the nml-core-docs.py file in the helpers directory will also need to be run. This script manually
adds each class from nml.py to the documentation as a sub-section using the autoclass sphinx directive instead of the
automodule directive which does not allow us to do this.

2.3 Implementation of XML bindings for libNeuroML

The GenerateDS Python package is used to automatically generate the NeuroML XML-bindings in libNeuroML from
the NeuroML Schema. This technique can be utilized for any XML Schema and is outlined in this section. The addition
of helper methods and enforcement of correct naming conventions is also described. For more detail on how Python
bindings for XML are generated, the reader is directed to the GenerateDS and libNeuroML documentation. In the
following subsections it is assumed that all commands are executed in a top level directory nml and that GenerateDS is
installed. It should be noted that enforcement of naming conventions and addition of helper methods are not required
by GenerateDS and default values may be used.

2.3.1 Correct naming conventions

A module named generateds_config.py is placed in the nml directory. This module contains a Python dictionary called
NameTable which maps the original names specified in the XML Schema to user-specified ones. The NameTable
dictionary can be defined explicitly or generated programmatically, for example using regular expressions.

2.3.2 Addition of helper methods

Helper methods associated with a class can be added to a Python module as string objects. In the case of libNeuroML
the module is called helper_methods.py. The precise implementation details are esoteric and the user is referred to the
GenerateDS documentation for details of how this functionality is implemented.

2.3.3 Generation of bindings

Once generateds_config.py and a helper methods module are present in the nml directory a valid XML Schema is
required by GenerateDS. The following command generates the nml.py module which contains the XML-bindings:

$ generateDS.py -o nml.py --use-getter-setter=none --user-methods=helper_methods NeuroML_
→˓v2beta1.xsd

The -o flag sets the file which the module containing the bindings is to be written to. The –use-getter-setter=none
option disables getters and setters for class attributes. The –user-methods flag indicates the name of the helper methods
module (See section “Addition of helper methods”). The final parameter (NeuroML_v2beta1.xsd) is the name of the
XML Schema used for generating the bindings.

2.2. Regenerating documentation 87

https://docs.neuroml.org/Devdocs/ReleaseProcess.html

libNeuroML Documentation, Release 0.3.1

2.4 Multicompartmental Python API Meeting

2.4.1 Organisation

Dates: 25 & 26 June 2012

Location: Room 336, Rockefeller building, UCL, London

Attendees: Sandra Berger, Andrew Davison, Padraig Gleeson, Mike Hull, Steve Marsh, Michele Mattioni, Eugenio
Piasini, Mike Vella

Sponsors: This meeting was generously supported by the INCF Multi Scale Modelling Program.

2.4.2 Minutes

Agreeing on terminology (segments, etc.) & scope

A discussion on the definitions of the key terms Node, Segment and Section is here, and was the basis for discussions
on these definitions at the meeting:

Nodes, Segments and Sections

Agreements

The Python libNeuroML API will use Node as a key building block for morphologies.

Segment is agreed on as the basis for defining morphologies in NeuroML and will be a top level object in libNeuroML,
where it will be the part of a neurite between two Nodes (proximal & distal).

Segment Group will be the basis for the grouping of these, and will be used to define dendrites, axons, etc.

Section is a term for the cable-like building block in NEURON, and will not be formally used in NeuroML or libNeu-
roML.

There was a discussion on whether it would be useful to be able to include this concept “by the back door” to enable
lossless import & export of morphologies from NEURON. Padraig’s proposal was to add an attribute (e.g. primary)
to the segmentGroup element to flag a core set of non overlapping segmentGroups, which are continuous (all children
are connected to distal point of parent) which would correspond to the old “cable” concept in NeuroML v1.x.

There was much discussion on the usefulness of this concept and whether it should be a different element/object in the
API from segmentGroup. The outcome was not fully resolved, but as a first test of this concept, Padraig will add the
new attribute to NeuroML, Mike V will add a flag (boolean?) to the API, and at a later point, when the API begins to
interact with native simulators, we can reevaluate the usefulness of the term.

Mike Vella’s current implementation

This is under development at: https://github.com/NeuralEnsemble/libNeuroML/tree/master/neuroml

Mike will continue on this (almost) full time for the next 2 months.

Following the meeting, he will perform a refactoring operation on the code base to better reflect the names used in
NeuroML, e.g.

neuroml_doc

cells

morphology # not entirely sure how this works- contains segment groups and is itself
a segment group?

88 Chapter 2. Contributing

http://www.incf.org/programs/modeling
https://github.com/NeuralEnsemble/libNeuroML/tree/master/neuroml

libNeuroML Documentation, Release 0.3.1

segments

segment_groups

segment_groups

biophysical_properties

notes

morphologies

networks

point currents

ion channels

synapses

extracellular properties

It was also decided that certain SegmentGroup names should have reserved names in libNeuroML, the exact imple-
mentation of this is undecided:

Segment groups with reserved names:

soma_group
axon_group
apical_dendrite_group
basal_dendrite_group

It was also decided that a segment should only be able to connect to the root of a morphology, the syntax should be
something along the lines of:

segment can only connect to root of a morphology

connect syntax examples:

morph2.attach(2,cell2,0.5) (default frac along = None)

and:

morph[2].attach(cell2,0.5)

Mike V was asked to add a clone method to a morphology.

It was decided that fraction_along should be a property of segment.

The syntax for segment groups should be as follows: group=morph.segment_groups[‘axon_group’] (in connect merge
groups should be false by default - throw an exception, tell the user setting merge_groups = True or rename group will
fix this)

This was a subject of great debate and has not been completely settled.

2.4. Multicompartmental Python API Meeting 89

libNeuroML Documentation, Release 0.3.1

Morphforge latest developments

Mike Hull gave a brief overview of the latest developments with Morphforge:

https://github.com/mikehulluk/morphforge

He pointed out that it’s still undergoing refactoring, but it can be used by other interested parties, and there is detailed
documentation online regarding installation, examples, etc.

Neuronvisio latest developments

Michele Mattioni gave a status update on Neuronvisio:

http://neuronvisio.org

The application has been closely linked to the NEURON simulator but hopefully use of libNeuroML will allow it to be
used independently of NEURON.

Michele showed Neuronvisio’s native HDF5 format as just one possible way to encode model structure + sim-
ulation results: https://github.com/NeuralEnsemble/libNeuroML/blob/master/hdf5Examples/Neuronvisio_medium_
cell_example_10ms.h5

Current Python & NeuroML support in MOOSE

A Skype call/Google Hangout was held on Tues at 9:30 to get an update from Bangalore.

The slides from this discussion are here:

https://github.com/NeuralEnsemble/libNeuroML/blob/master/doc/2012_06_26_neuroml_with_pymoose.pdf

As outlined there there are a number of areas in which MOOSE and Moogli import/export NeuroML version 1.x. A
number of issues and desired features missing in v1.x were highlighted, most of which are implemented or planned for
NeuroML v2.0.

There was general enthusiasm about the libNeuroML project, and it was felt that MOOSE should eventually transition
to using libNeuroML to import NeuroML models. This will happen in parallel with updating of the MOOSE PyNN
implementation.

The MOOSE developers were also keen to see how the new ComponentTypes in NeuroML 2 will map to inbuilt objects
in MOOSE (e.g. Integrate-and-Fire neurons, Markov channel, Izhikevich). They will add simple examples to the latest
MOOSE code to demonstrate their current implementation and discussion can continue on the mailing lists.

Saving to & loading from XML

There was not any detailed discussion on the various strategies for reading/saving XML in Python.

Padraig’s suggestion based on generateDS.py: https://github.com/NeuralEnsemble/libNeuroML/tree/master/ideas/
padraig/generatedFromV2Schema produces a very big file, which while usable as an API, e.g. see:

https://github.com/NeuralEnsemble/libNeuroML/blob/master/hhExample/hh_NEUROML2.py

could do with a lot of refactoring. It was felt that a version of this with a very efficient description of morphologies
(and network instances) based on the current work of Mike V is the way forward.

90 Chapter 2. Contributing

https://github.com/mikehulluk/morphforge
http://neuronvisio.org
https://github.com/NeuralEnsemble/libNeuroML/blob/master/hdf5Examples/Neuronvisio_medium_cell_example_10ms.h5
https://github.com/NeuralEnsemble/libNeuroML/blob/master/hdf5Examples/Neuronvisio_medium_cell_example_10ms.h5
https://github.com/NeuralEnsemble/libNeuroML/blob/master/doc/2012_06_26_neuroml_with_pymoose.pdf
http://www.rexx.com/~dkuhlman/generateDS.html
https://github.com/NeuralEnsemble/libNeuroML/tree/master/ideas/padraig/generatedFromV2Schema
https://github.com/NeuralEnsemble/libNeuroML/tree/master/ideas/padraig/generatedFromV2Schema
https://github.com/NeuralEnsemble/libNeuroML/blob/master/hhExample/hh_NEUROML2.py

libNeuroML Documentation, Release 0.3.1

Storing simulation data as HDF5

The examples at: https://github.com/NeuralEnsemble/libNeuroML/tree/master/hdf5Examples have been updated.

The long term aim would be to arrive at a common format here that can be saved by simulators and that visualisation
packages like Moogli and Neuronvisio can read and display. This may be based on Neo: http://packages.python.org/
neo/, but that package’s current lack of ability to deal with data with nonuniform time points (e.g. produced by variable
time step simulations) may be a limiting factor.

General PyNN & NeuroML v2.0 interoperability

There was agreement that libNeuroML will form the basis of the multicompartmental neuron support in PyNN. The
extra functionality needed to interact with simulators is currently termed “Pyramidal”, but this will eventually be fully
merged into PyNN.

http://neuralensemble.org/trac/PyNN http://www.neuroml.org/NeuroML2CoreTypes/PyNN.html http://www.
neuroml.org/pynn.php

2.5 Nodes, Segments and Sections

An attempt to clarify these interrelated terms used in describing morphologies. Names in bold type are used for
elements of the NeuroML object model.

2.5.1 Nodes

A node is a 3D point with diameter information which forms the basis for 3D morphological reconstructions.

These nodes (or points) are the fundamental building blocks in the SWC and Neurolucida formats. This method of
description is based on the assumption that each node is physically connected to another node.

2.5.2 Segments

A segment (according to NeuroML v1&2) is a part of a neuronal tree between two 3D points with diameters (proximal
& distal). The term node isn’t used in NeuroML but the above description describes perfectly well the proximal &
distal points. Cell morphology elements consist of lists of segments (each with unique integer id, and optional name).

All segments, apart from the root segment, have a parent segment. If the proximal point of the segment is not specified,
the distal point of the parent segment is used for the proximal point of the child.

A special case is defined where proximal == distal, and the segment is assumed to be a sphere at that location with
the specified diameter.

Segments can be grouped into segmentGroups in NeuroML v2.0. These can be used to specify “apical_dendrites”,
“axon_group”, etc., which in turn can be used for placing channels on the cell.

An example of a NeuroML v2.0 cell is here.

libNeuroML will allow low level access to create and modify morphologies by handling nodes. Segments will also be
top level objects in the API. The XML serialisation will only specify segments with proximal & distal points, but the
HDF5 version may have an efficient serialisation of nodes & segments.

2.5. Nodes, Segments and Sections 91

https://github.com/NeuralEnsemble/libNeuroML/tree/master/hdf5Examples
http://packages.python.org/neo/
http://packages.python.org/neo/
http://neuralensemble.org/trac/PyNN
http://www.neuroml.org/NeuroML2CoreTypes/PyNN.html
http://www.neuroml.org/pynn.php
http://www.neuroml.org/pynn.php
http://sourceforge.net/apps/trac/neuroml/browser/NeuroML2/examples/NML2_SimpleMorphology.nml

libNeuroML Documentation, Release 0.3.1

2.5.3 Sections

The concept of section is fundamentally important in NEURON. A section in this simulator is an unbranched cable
which can have multiple 3D points outlining the structure of a neurite in 3D. These points are used to determine the
surface area along the section. NEURON can vary the spatial discretisation of the neurite by varying the “nseg” value
of the section, e.g. a section with 20 3D points and nseg =4 will be split into 4 parts of equal length for simulating (as
isopotential compartments), with the surface area (and so total channel conductance) of each determined by the set of
3D points in that part.

There was a similar concept to this in NeuroML v1.x, the cable. Each segment had an attribute for the cable id, and
these were used for mapping to and from NEURON. Cables were unbranched, and so all segments after the first in the
cable only had distal points, see this example.

The cable concept was removed in NeuroML v2.0, as this is was seen as imposing concepts from compartmental
modelling on the basic morphological descriptions of cells. There is only a segmentGroup element for grouping
segments, though a segment can belong to multiple segmentGroups, which don’t need to be unbranched (unlike
cables). There may need to be a new attribute in segmentGroup (e.g. primary or unbranched or cable=”true”) which
defines a nonoverlapping set of unbranched segmentGroups, which can be used as the basis for sections in any parsing
application which is interested in them, or be ignored by any other application.

In libNeuroML, a section-like concept can be added at API level, to facilitate building cells, to facilitate import/export
to/from simulators supporting this concept, and to serve as a basis for recompartmentalisation of cells.

2.5.4 Issues

Dendrites in space

One major issue to address is that in many neuronal reconstructions, the soma is not included (or perhaps just an outline
of the soma is given), only the dendrites are. These dendrites’ 3D start points are on the edge of the soma membrane
“floating in space”. Normal procedure for a modeller in this case is to create a spherical soma at this central point and
electrically attach the dendrites to the centre of this.

In this case (and many others) the physical location of the start of the child segments do not correspond to the electrical
(or logical) connection point on the parent. This has advantages and disadvantages:

(+) It allows the real 3D points of the neuronal reconstruction to be retained (useful for visualisation)

(-) This is not unambiguously captured in the simplest morphological formats like SWC, which assume physical con-
nectivity between nodes/points

This scenario is supported in NeuroML v1&2, where a child segment has the option to redefine its start point (by adding
a proximal) with the child <-> parent relationship defining the electrical connection. This allows lossless import &
export from NEURON and removes the ambiguity of more compact formats like SWC and Neurolucida.

Connections mid segment

Another option for electrical connections (also influences by NEURON sections) is the ability for segments to (electri-
cally/logically) connect to a point inside a segment. This is specified by adding a fractionAlong attribute to the parent
element, i.e.

<parent segment="2" fractionAlong="0.5"/>

This is not possible in a node based format, but represents a logically consistent description of what the modeller wants.

92 Chapter 2. Contributing

http://www.neuroml.org/NeuroMLValidator/ViewNeuroMLFile.jsp?localFile=NeuroMLFiles/Examples/ChannelML/PyramidalCell.xml

libNeuroML Documentation, Release 0.3.1

What to do?

Two options are available then for a serialisation format or API: should it try to support all of these scenarios, or try to
enforce “best practice”?

PG: I’d argue for the first approach, as it retains as much as possible of what the original reconstructor/simulator
specified. An API which enforces a policy when it encounters a non optimal morphology (e.g. moving all dendrites to
connection points, inserting new nodes) will alter the original data in perhaps unintended ways, and that information
will be lost by subsequent readers. It should be up to each parsing application to decide what to do with the extra
information when it reads in a file.

2.5. Nodes, Segments and Sections 93

libNeuroML Documentation, Release 0.3.1

94 Chapter 2. Contributing

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

95

libNeuroML Documentation, Release 0.3.1

96 Chapter 3. Indices and tables

BIBLIOGRAPHY

[VCC+14] Michael Vella, Robert C. Cannon, Sharon Crook, Andrew P. Davison, Gautham Ganapathy, Hugh P. C.
Robinson, R. Angus Silver, and Padraig Gleeson. Libneuroml and pylems: using python to combine proce-
dural and declarative modeling approaches in computational neuroscience. Frontiers in neuroinformatics,
8:38, 2014. doi:10.3389/fninf.2014.00038.

97

https://doi.org/10.3389/fninf.2014.00038

libNeuroML Documentation, Release 0.3.1

98 Bibliography

PYTHON MODULE INDEX

n
neuroml.loaders, 66
neuroml.utils, 67
neuroml.writers, 67

99

libNeuroML Documentation, Release 0.3.1

100 Python Module Index

INDEX

A
add() (neuroml.nml.nml.BaseWithoutId method), 11
add_all_to_document() (in module neuroml.utils), 67
AdExIaFCell (class in neuroml.nml.nml), 6
AlphaCondSynapse (class in neuroml.nml.nml), 6
AlphaCurrentSynapse (class in neuroml.nml.nml), 7
AlphaCurrSynapse (class in neuroml.nml.nml), 7
AlphaSynapse (class in neuroml.nml.nml), 7
Annotation (class in neuroml.nml.nml), 7
append() (neuroml.nml.nml.NeuroMLDocument

method), 49
append_to_element() (in module neuroml.utils), 67
ArrayMorphLoader (class in neuroml.loaders), 66
ArrayMorphWriter (class in neuroml.writers), 67

B
Base (class in neuroml.nml.nml), 8
BaseCell (class in neuroml.nml.nml), 8
BaseCellMembPotCap (class in neuroml.nml.nml), 8
BaseConductanceBasedSynapse (class in neu-

roml.nml.nml), 8
BaseConductanceBasedSynapseTwo (class in neu-

roml.nml.nml), 9
BaseConnection (class in neuroml.nml.nml), 9
BaseConnectionNewFormat (class in neu-

roml.nml.nml), 9
BaseConnectionOldFormat (class in neu-

roml.nml.nml), 9
BaseCurrentBasedSynapse (class in neu-

roml.nml.nml), 10
BaseNonNegativeIntegerId (class in neu-

roml.nml.nml), 10
BaseProjection (class in neuroml.nml.nml), 10
basePyNNCell (class in neuroml.nml.nml), 64
basePyNNIaFCell (class in neuroml.nml.nml), 65
basePyNNIaFCondCell (class in neuroml.nml.nml), 65
BasePynnSynapse (class in neuroml.nml.nml), 10
BaseSynapse (class in neuroml.nml.nml), 10
BaseVoltageDepSynapse (class in neuroml.nml.nml),

11
BaseWithoutId (class in neuroml.nml.nml), 11

BiophysicalProperties (class in neuroml.nml.nml),
12

BiophysicalProperties2CaPools (class in neu-
roml.nml.nml), 12

BlockingPlasticSynapse (class in neuroml.nml.nml),
12

BlockMechanism (class in neuroml.nml.nml), 12

C
Case (class in neuroml.nml.nml), 13
Cell (class in neuroml.nml.nml), 13
Cell2CaPools (class in neuroml.nml.nml), 15
CellSet (class in neuroml.nml.nml), 15
ChannelDensity (class in neuroml.nml.nml), 15
ChannelDensityGHK (class in neuroml.nml.nml), 16
ChannelDensityGHK2 (class in neuroml.nml.nml), 16
ChannelDensityNernst (class in neuroml.nml.nml), 16
ChannelDensityNernstCa2 (class in neu-

roml.nml.nml), 16
ChannelDensityNonUniform (class in neu-

roml.nml.nml), 17
ChannelDensityNonUniformGHK (class in neu-

roml.nml.nml), 17
ChannelDensityNonUniformNernst (class in neu-

roml.nml.nml), 17
ChannelDensityVShift (class in neuroml.nml.nml), 18
ChannelPopulation (class in neuroml.nml.nml), 18
ClosedState (class in neuroml.nml.nml), 18
ComponentType (class in neuroml.nml.nml), 19
CompoundInput (class in neuroml.nml.nml), 19
CompoundInputDL (class in neuroml.nml.nml), 19
ConcentrationModel_D (class in neuroml.nml.nml), 19
ConditionalDerivedVariable (class in neu-

roml.nml.nml), 20
Connection (class in neuroml.nml.nml), 20
ConnectionWD (class in neuroml.nml.nml), 21
Constant (class in neuroml.nml.nml), 22
ContinuousConnection (class in neuroml.nml.nml), 22
ContinuousConnectionInstance (class in neu-

roml.nml.nml), 23
ContinuousConnectionInstanceW (class in neu-

roml.nml.nml), 23

101

libNeuroML Documentation, Release 0.3.1

ContinuousProjection (class in neuroml.nml.nml), 23

D
DecayingPoolConcentrationModel (class in neu-

roml.nml.nml), 24
DerivedVariable (class in neuroml.nml.nml), 24
DistalDetails (class in neuroml.nml.nml), 24
distance_to() (neuroml.nml.nml.Point3DWithDiam

method), 51
DoubleSynapse (class in neuroml.nml.nml), 24
Dynamics (class in neuroml.nml.nml), 25

E
EIF_cond_alpha_isfa_ista (class in neu-

roml.nml.nml), 25
EIF_cond_exp_isfa_ista (class in neuroml.nml.nml),

26
ElectricalConnection (class in neuroml.nml.nml), 27
ElectricalConnectionInstance (class in neu-

roml.nml.nml), 27
ElectricalConnectionInstanceW (class in neu-

roml.nml.nml), 28
ElectricalProjection (class in neuroml.nml.nml), 28
ExpCondSynapse (class in neuroml.nml.nml), 28
ExpCurrSynapse (class in neuroml.nml.nml), 29
ExplicitInput (class in neuroml.nml.nml), 30
ExpOneSynapse (class in neuroml.nml.nml), 29
exportHdf5() (neuroml.nml.nml.ContinuousProjection

method), 23
exportHdf5() (neuroml.nml.nml.ElectricalProjection

method), 28
exportHdf5() (neuroml.nml.nml.InputList method), 42
exportHdf5() (neuroml.nml.nml.Network method), 48
exportHdf5() (neuroml.nml.nml.Population method),

52
exportHdf5() (neuroml.nml.nml.Projection method), 52
Exposure (class in neuroml.nml.nml), 30
ExpThreeSynapse (class in neuroml.nml.nml), 29
ExpTwoSynapse (class in neuroml.nml.nml), 30
ExtracellularProperties (class in neu-

roml.nml.nml), 31
ExtracellularPropertiesLocal (class in neu-

roml.nml.nml), 31

F
FitzHughNagumo1969Cell (class in neuroml.nml.nml),

31
FitzHughNagumoCell (class in neuroml.nml.nml), 31
FixedFactorConcentrationModel (class in neu-

roml.nml.nml), 32
ForwardTransition (class in neuroml.nml.nml), 32

G
GapJunction (class in neuroml.nml.nml), 32

GateFractional (class in neuroml.nml.nml), 32
GateFractionalSubgate (class in neuroml.nml.nml),

33
GateHHInstantaneous (class in neuroml.nml.nml), 33
GateHHRates (class in neuroml.nml.nml), 33
GateHHRatesInf (class in neuroml.nml.nml), 33
GateHHRatesTau (class in neuroml.nml.nml), 33
GateHHRatesTauInf (class in neuroml.nml.nml), 34
GateHHTauInf (class in neuroml.nml.nml), 34
GateHHUndetermined (class in neuroml.nml.nml), 34
GateKS (class in neuroml.nml.nml), 34
get_actual_proximal() (neuroml.nml.nml.Cell

method), 13
get_all_segments_in_group() (neu-

roml.nml.nml.Cell method), 13
get_by_id() (neuroml.nml.nml.Network method), 48
get_by_id() (neuroml.nml.nml.NeuroMLDocument

method), 49
get_delay_in_ms() (neuroml.nml.nml.ConnectionWD

method), 21
get_fraction_along() (neu-

roml.nml.nml.ExplicitInput method), 30
get_fraction_along() (neuroml.nml.nml.Input

method), 41
get_members() (neuroml.nml.nml.BaseWithoutId

method), 11
get_ordered_segments_in_groups() (neu-

roml.nml.nml.Cell method), 13
get_post_cell_id() (neuroml.nml.nml.Connection

method), 20
get_post_cell_id() (neu-

roml.nml.nml.ConnectionWD method), 21
get_post_cell_id() (neu-

roml.nml.nml.ContinuousConnection method),
22

get_post_cell_id() (neu-
roml.nml.nml.ElectricalConnection method),
27

get_post_fraction_along() (neu-
roml.nml.nml.Connection method), 20

get_post_fraction_along() (neu-
roml.nml.nml.ConnectionWD method), 21

get_post_fraction_along() (neu-
roml.nml.nml.ContinuousConnection method),
22

get_post_fraction_along() (neu-
roml.nml.nml.ElectricalConnection method),
27

get_post_info() (neuroml.nml.nml.Connection
method), 20

get_post_info() (neuroml.nml.nml.ConnectionWD
method), 21

get_post_info() (neu-
roml.nml.nml.ContinuousConnection method),

102 Index

libNeuroML Documentation, Release 0.3.1

22
get_post_info() (neu-

roml.nml.nml.ElectricalConnection method),
27

get_post_segment_id() (neu-
roml.nml.nml.Connection method), 20

get_post_segment_id() (neu-
roml.nml.nml.ConnectionWD method), 21

get_post_segment_id() (neu-
roml.nml.nml.ContinuousConnection method),
22

get_post_segment_id() (neu-
roml.nml.nml.ElectricalConnection method),
27

get_pre_cell_id() (neuroml.nml.nml.Connection
method), 20

get_pre_cell_id() (neuroml.nml.nml.ConnectionWD
method), 21

get_pre_cell_id() (neu-
roml.nml.nml.ContinuousConnection method),
22

get_pre_cell_id() (neu-
roml.nml.nml.ElectricalConnection method),
27

get_pre_fraction_along() (neu-
roml.nml.nml.Connection method), 20

get_pre_fraction_along() (neu-
roml.nml.nml.ConnectionWD method), 21

get_pre_fraction_along() (neu-
roml.nml.nml.ContinuousConnection method),
22

get_pre_fraction_along() (neu-
roml.nml.nml.ElectricalConnection method),
27

get_pre_info() (neuroml.nml.nml.Connection
method), 20

get_pre_info() (neuroml.nml.nml.ConnectionWD
method), 21

get_pre_info() (neu-
roml.nml.nml.ContinuousConnection method),
22

get_pre_info() (neu-
roml.nml.nml.ElectricalConnection method),
27

get_pre_segment_id() (neuroml.nml.nml.Connection
method), 20

get_pre_segment_id() (neu-
roml.nml.nml.ConnectionWD method), 21

get_pre_segment_id() (neu-
roml.nml.nml.ContinuousConnection method),
22

get_pre_segment_id() (neu-
roml.nml.nml.ElectricalConnection method),
27

get_segment() (neuroml.nml.nml.Cell method), 14
get_segment_group() (neuroml.nml.nml.Cell method),

14
get_segment_groups_by_substring() (neu-

roml.nml.nml.Cell method), 14
get_segment_id() (neuroml.nml.nml.ExplicitInput

method), 30
get_segment_id() (neuroml.nml.nml.Input method), 41
get_segment_ids_vs_segments() (neu-

roml.nml.nml.Cell method), 14
get_segment_length() (neuroml.nml.nml.Cell

method), 14
get_segment_surface_area() (neuroml.nml.nml.Cell

method), 14
get_segment_volume() (neuroml.nml.nml.Cell

method), 14
get_segments_by_substring() (neu-

roml.nml.nml.Cell method), 14
get_size() (neuroml.nml.nml.Population method), 52
get_summary() (in module neuroml.utils), 67
get_target_cell_id() (neu-

roml.nml.nml.ExplicitInput method), 30
get_target_cell_id() (neuroml.nml.nml.Input

method), 41
get_target_population() (neu-

roml.nml.nml.ExplicitInput method), 30
get_weight() (neuroml.nml.nml.ContinuousConnectionInstanceW

method), 23
get_weight() (neuroml.nml.nml.ElectricalConnectionInstanceW

method), 28
get_weight() (neuroml.nml.nml.InputW method), 42
GradedSynapse (class in neuroml.nml.nml), 35
GridLayout (class in neuroml.nml.nml), 35

H
has_segment_fraction_info() (in module neu-

roml.utils), 67
HH_cond_exp (class in neuroml.nml.nml), 36
HHRate (class in neuroml.nml.nml), 35
HHTime (class in neuroml.nml.nml), 35
HHVariable (class in neuroml.nml.nml), 35

I
IafCell (class in neuroml.nml.nml), 39
IafRefCell (class in neuroml.nml.nml), 39
IafTauCell (class in neuroml.nml.nml), 40
IafTauRefCell (class in neuroml.nml.nml), 40
IF_cond_alpha (class in neuroml.nml.nml), 36
IF_cond_exp (class in neuroml.nml.nml), 37
IF_curr_alpha (class in neuroml.nml.nml), 38
IF_curr_exp (class in neuroml.nml.nml), 38
Include (class in neuroml.nml.nml), 40
IncludeType (class in neuroml.nml.nml), 41
info() (neuroml.nml.nml.BaseWithoutId method), 11

Index 103

libNeuroML Documentation, Release 0.3.1

InhomogeneousParameter (class in neuroml.nml.nml),
41

InhomogeneousValue (class in neuroml.nml.nml), 41
InitMembPotential (class in neuroml.nml.nml), 41
Input (class in neuroml.nml.nml), 41
InputList (class in neuroml.nml.nml), 42
InputW (class in neuroml.nml.nml), 42
Instance (class in neuroml.nml.nml), 42
InstanceRequirement (class in neuroml.nml.nml), 42
IntracellularProperties (class in neu-

roml.nml.nml), 42
IntracellularProperties2CaPools (class in neu-

roml.nml.nml), 43
IonChannel (class in neuroml.nml.nml), 43
IonChannelHH (class in neuroml.nml.nml), 43
IonChannelKS (class in neuroml.nml.nml), 44
IonChannelScalable (class in neuroml.nml.nml), 44
IonChannelVShift (class in neuroml.nml.nml), 44
is_valid_neuroml2() (in module neuroml.utils), 68
Izhikevich2007Cell (class in neuroml.nml.nml), 44
IzhikevichCell (class in neuroml.nml.nml), 45

L
Layout (class in neuroml.nml.nml), 46
LEMS_Property (class in neuroml.nml.nml), 45
length (neuroml.nml.nml.Segment property), 56
LinearGradedSynapse (class in neuroml.nml.nml), 46
load() (neuroml.loaders.ArrayMorphLoader class

method), 66
load() (neuroml.loaders.NeuroMLHdf5Loader class

method), 66
load() (neuroml.loaders.NeuroMLLoader class

method), 66
load_swc_single() (neuroml.loaders.SWCLoader

class method), 66
Location (class in neuroml.nml.nml), 46

M
main() (in module neuroml.utils), 68
Member (class in neuroml.nml.nml), 46
MembraneProperties (class in neuroml.nml.nml), 46
MembraneProperties2CaPools (class in neu-

roml.nml.nml), 47
module

neuroml.loaders, 66
neuroml.utils, 67
neuroml.writers, 67

Morphology (class in neuroml.nml.nml), 47

N
NamedDimensionalType (class in neuroml.nml.nml), 47
NamedDimensionalVariable (class in neu-

roml.nml.nml), 48
Network (class in neuroml.nml.nml), 48

neuroml.loaders
module, 66

neuroml.utils
module, 67

neuroml.writers
module, 67

NeuroMLDocument (class in neuroml.nml.nml), 49
NeuroMLHdf5Loader (class in neuroml.loaders), 66
NeuroMLHdf5Writer (class in neuroml.writers), 67
NeuroMLLoader (class in neuroml.loaders), 66
NeuroMLWriter (class in neuroml.writers), 67
num_segments (neuroml.nml.nml.Morphology prop-

erty), 47

O
OpenState (class in neuroml.nml.nml), 50

P
Parameter (class in neuroml.nml.nml), 50
Path (class in neuroml.nml.nml), 50
PinskyRinzelCA3Cell (class in neuroml.nml.nml), 50
PlasticityMechanism (class in neuroml.nml.nml), 51
Point3DWithDiam (class in neuroml.nml.nml), 51
PoissonFiringSynapse (class in neuroml.nml.nml), 52
Population (class in neuroml.nml.nml), 52
print_() (in module neuroml.loaders), 66
print_summary() (in module neuroml.utils), 68
Projection (class in neuroml.nml.nml), 52
Property (class in neuroml.nml.nml), 53
ProximalDetails (class in neuroml.nml.nml), 53
PulseGenerator (class in neuroml.nml.nml), 53
PulseGeneratorDL (class in neuroml.nml.nml), 53

Q
Q10ConductanceScaling (class in neuroml.nml.nml),

54
Q10Settings (class in neuroml.nml.nml), 54

R
RampGenerator (class in neuroml.nml.nml), 54
RampGeneratorDL (class in neuroml.nml.nml), 55
RandomLayout (class in neuroml.nml.nml), 55
ReactionScheme (class in neuroml.nml.nml), 55
read_neuroml2_file() (in module neuroml.loaders),

66
read_neuroml2_string() (in module neu-

roml.loaders), 66
Region (class in neuroml.nml.nml), 55
Requirement (class in neuroml.nml.nml), 56
Resistivity (class in neuroml.nml.nml), 56
ReverseTransition (class in neuroml.nml.nml), 56

S
Segment (class in neuroml.nml.nml), 56

104 Index

libNeuroML Documentation, Release 0.3.1

SegmentEndPoint (class in neuroml.nml.nml), 57
SegmentGroup (class in neuroml.nml.nml), 57
SegmentParent (class in neuroml.nml.nml), 57
SilentSynapse (class in neuroml.nml.nml), 57
SineGenerator (class in neuroml.nml.nml), 58
SineGeneratorDL (class in neuroml.nml.nml), 58
Space (class in neuroml.nml.nml), 59
SpaceStructure (class in neuroml.nml.nml), 59
Species (class in neuroml.nml.nml), 59
SpecificCapacitance (class in neuroml.nml.nml), 59
Spike (class in neuroml.nml.nml), 59
SpikeArray (class in neuroml.nml.nml), 60
SpikeGenerator (class in neuroml.nml.nml), 60
SpikeGeneratorPoisson (class in neuroml.nml.nml),

60
SpikeGeneratorRandom (class in neuroml.nml.nml), 60
SpikeGeneratorRefPoisson (class in neu-

roml.nml.nml), 61
SpikeSourcePoisson (class in neuroml.nml.nml), 61
SpikeThresh (class in neuroml.nml.nml), 61
Standalone (class in neuroml.nml.nml), 61
StateVariable (class in neuroml.nml.nml), 62
SubTree (class in neuroml.nml.nml), 62
summary() (neuroml.nml.nml.Cell method), 15
summary() (neuroml.nml.nml.NeuroMLDocument

method), 49
surface_area (neuroml.nml.nml.Segment property), 56
SWCLoader (class in neuroml.loaders), 66
SynapticConnection (class in neuroml.nml.nml), 62

T
TauInfTransition (class in neuroml.nml.nml), 62
TimeDerivative (class in neuroml.nml.nml), 62
TimedSynapticInput (class in neuroml.nml.nml), 62
TransientPoissonFiringSynapse (class in neu-

roml.nml.nml), 63

U
UnstructuredLayout (class in neuroml.nml.nml), 63

V
validate_neuroml2() (in module neuroml.utils), 68
validate_Nml2Quantity_resistivity() (neu-

roml.nml.nml.Resistivity method), 56
validate_Nml2Quantity_resistivity_patterns_

(neuroml.nml.nml.Resistivity attribute), 56
VariableParameter (class in neuroml.nml.nml), 63
VoltageClamp (class in neuroml.nml.nml), 63
VoltageClampTriple (class in neuroml.nml.nml), 64
volume (neuroml.nml.nml.Segment property), 57

W
write() (neuroml.writers.ArrayMorphWriter class

method), 67

write() (neuroml.writers.NeuroMLHdf5Writer class
method), 67

write() (neuroml.writers.NeuroMLWriter class
method), 67

Index 105

	User guide
	Introduction
	NeuroML
	Serialisations

	Installation
	Using Pip
	On Fedora based systems
	Install from source
	Run an example
	Unit tests

	API documentation
	nml Module (NeuroML Core classes)
	List of Component classes
	AdExIaFCell
	AlphaCondSynapse
	AlphaCurrSynapse
	AlphaCurrentSynapse
	AlphaSynapse
	Annotation
	Base
	BaseCell
	BaseCellMembPotCap
	BaseConductanceBasedSynapse
	BaseConductanceBasedSynapseTwo
	BaseConnection
	BaseConnectionNewFormat
	BaseConnectionOldFormat
	BaseCurrentBasedSynapse
	BaseNonNegativeIntegerId
	BaseProjection
	BasePynnSynapse
	BaseSynapse
	BaseVoltageDepSynapse
	BaseWithoutId
	BiophysicalProperties
	BiophysicalProperties2CaPools
	BlockMechanism
	BlockingPlasticSynapse
	Case
	Cell
	Cell2CaPools
	CellSet
	ChannelDensity
	ChannelDensityGHK
	ChannelDensityGHK2
	ChannelDensityNernst
	ChannelDensityNernstCa2
	ChannelDensityNonUniform
	ChannelDensityNonUniformGHK
	ChannelDensityNonUniformNernst
	ChannelDensityVShift
	ChannelPopulation
	ClosedState
	ComponentType
	CompoundInput
	CompoundInputDL
	ConcentrationModel_D
	ConditionalDerivedVariable
	Connection
	ConnectionWD
	Constant
	ContinuousConnection
	ContinuousConnectionInstance
	ContinuousConnectionInstanceW
	ContinuousProjection
	DecayingPoolConcentrationModel
	DerivedVariable
	DistalDetails
	DoubleSynapse
	Dynamics
	EIF_cond_alpha_isfa_ista
	EIF_cond_exp_isfa_ista
	ElectricalConnection
	ElectricalConnectionInstance
	ElectricalConnectionInstanceW
	ElectricalProjection
	ExpCondSynapse
	ExpCurrSynapse
	ExpOneSynapse
	ExpThreeSynapse
	ExpTwoSynapse
	ExplicitInput
	Exposure
	ExtracellularProperties
	ExtracellularPropertiesLocal
	FitzHughNagumo1969Cell
	FitzHughNagumoCell
	FixedFactorConcentrationModel
	ForwardTransition
	GapJunction
	GateFractional
	GateFractionalSubgate
	GateHHInstantaneous
	GateHHRates
	GateHHRatesInf
	GateHHRatesTau
	GateHHRatesTauInf
	GateHHTauInf
	GateHHUndetermined
	GateKS
	GradedSynapse
	GridLayout
	HHRate
	HHTime
	HHVariable
	HH_cond_exp
	IF_cond_alpha
	IF_cond_exp
	IF_curr_alpha
	IF_curr_exp
	IafCell
	IafRefCell
	IafTauCell
	IafTauRefCell
	Include
	IncludeType
	InhomogeneousParameter
	InhomogeneousValue
	InitMembPotential
	Input
	InputList
	InputW
	Instance
	InstanceRequirement
	IntracellularProperties
	IntracellularProperties2CaPools
	IonChannel
	IonChannelHH
	IonChannelKS
	IonChannelScalable
	IonChannelVShift
	Izhikevich2007Cell
	IzhikevichCell
	LEMS_Property
	Layout
	LinearGradedSynapse
	Location
	Member
	MembraneProperties
	MembraneProperties2CaPools
	Morphology
	NamedDimensionalType
	NamedDimensionalVariable
	Network
	NeuroMLDocument
	OpenState
	Parameter
	Path
	PinskyRinzelCA3Cell
	PlasticityMechanism
	Point3DWithDiam
	PoissonFiringSynapse
	Population
	Projection
	Property
	ProximalDetails
	PulseGenerator
	PulseGeneratorDL
	Q10ConductanceScaling
	Q10Settings
	RampGenerator
	RampGeneratorDL
	RandomLayout
	ReactionScheme
	Region
	Requirement
	Resistivity
	ReverseTransition
	Segment
	SegmentEndPoint
	SegmentGroup
	SegmentParent
	SilentSynapse
	SineGenerator
	SineGeneratorDL
	Space
	SpaceStructure
	Species
	SpecificCapacitance
	Spike
	SpikeArray
	SpikeGenerator
	SpikeGeneratorPoisson
	SpikeGeneratorRandom
	SpikeGeneratorRefPoisson
	SpikeSourcePoisson
	SpikeThresh
	Standalone
	StateVariable
	SubTree
	SynapticConnection
	TauInfTransition
	TimeDerivative
	TimedSynapticInput
	TransientPoissonFiringSynapse
	UnstructuredLayout
	VariableParameter
	VoltageClamp
	VoltageClampTriple
	basePyNNCell
	basePyNNIaFCell
	basePyNNIaFCondCell

	loaders Module
	writers Module
	utils Module
	arraymorph Module

	Examples
	Creating a NeuroML morphology
	Loading and modifying a file
	Building a network
	Building a 3D network
	Ion channels
	PyNN models
	Synapses
	Working with JSON serialization
	Working with arraymorphs
	Working with Izhikevich Cells

	References

	Contributing
	How to contribute
	Setting up
	Sync with upstream
	Working locally on a dedicated branch
	Continuous integration
	Release process

	Regenerating documentation
	Implementation of XML bindings for libNeuroML
	Correct naming conventions
	Addition of helper methods
	Generation of bindings

	Multicompartmental Python API Meeting
	Organisation
	Minutes
	Agreeing on terminology (segments, etc.) & scope
	Mike Vella’s current implementation
	Morphforge latest developments
	Neuronvisio latest developments
	Current Python & NeuroML support in MOOSE
	Saving to & loading from XML
	Storing simulation data as HDF5
	General PyNN & NeuroML v2.0 interoperability

	Nodes, Segments and Sections
	Nodes
	Segments
	Sections
	Issues
	Dendrites in space
	Connections mid segment
	What to do?

	Indices and tables
	Bibliography
	Python Module Index
	Index

