

libNeuroML: documentation

Welcome to the libNeuroML documentation.
Here you will find information on installing, using, and contributing to libNeuroML.
For more information on NeuroML standard, other tools in the NeuroML eco-system, the NeuroML community and how to get in touch with us, please see the documentation at https://docs.neuroml.org.

	User guide
	Introduction

	Installation

	API documentation

	Examples

	References

	Contributing
	How to contribute

	Regenerating documentation

	Implementation of XML bindings for libNeuroML

	Multicompartmental Python API Meeting

	Nodes, Segments and Sections

Indices and tables

	Index

	Module Index

	Search Page

User guide

	Introduction
	NeuroML

	Serialisations

	Installation
	Using Pip

	On Fedora based systems

	Install from source

	Run an example

	Unit tests

	API documentation
	nml Module (NeuroML Core classes)

	loaders Module

	writers Module

	utils Module

	arraymorph Module

	Examples
	Creating a NeuroML morphology

	Loading and modifying a file

	Building a network

	Building a 3D network

	Ion channels

	PyNN models

	Synapses

	Working with arraymorphs

	Working with Izhikevich Cells

	References

Introduction

This package provides Python libNeuroML, for working with neuronal models specified in NeuroML 2 [http://docs.neuroml.org].

Warning

libNeuroML targets NeuroML v2.0

libNeuroML targets NeuroML v2.0 [http://docs.neuroml.org], which is described in Cannon et al, 2014 [http://journal.frontiersin.org/Journal/10.3389/fninf.2014.00079/abstract]).
NeuroML v1.8.1 (Gleeson et al. 2010 [http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000815]) is now deprecated and not supported by libNeuroML.

For a detailed description of libNeuroML see Vella et al. [VCC+14].
Please cite the paper if you use libNeuroML.

NeuroML

NeuroML provides an object model for describing neuronal morphologies, ion channels, synapses and 3D network structure.
For more information on NeuroML 2 and LEMS please see the NeuroML documentation [https://docs.neuroml.org/Userdocs/NeuroMLv2.html].

Serialisations

The XML serialisation will be the “natural” serialisation and will follow closely the NeuroML object model.
The format of the XML will be specified by the XML Schema definition (XSD file).

Other serialisations have also been developed (HDF5, SWC).
Please see Vella et al. [VCC+14] for more details.

Installation

Using Pip

On most systems with a Python installation, libNeuroML can be installed using the default Python package manager, Pip:

pip install libNeuroML

It is recommended to use a virtual environment [https://docs.python.org/3/tutorial/venv.html] when installing Python packages using pip to prevent these from conflicting with other system libraries.

This will support the default XML serialization.
To install all of requirements to include the other serialisations, use

On Ubuntu based systems
sudo apt-get install libhdf5-dev
pip install libNeuroML[full]

The apt line is required at time of writing because PyTables’ wheels for python 3.7 depend on the system libhdf5.

On Fedora based systems

On Fedora [https://getfedora.org] Linux systems, the NeuroFedora [https://neuro.fedoraproject.org] community provides libNeuroML in the standard Fedora repos [https://src.fedoraproject.org/rpms/python-libNeuroML] and can be installed using the following commands:

sudo dnf install python3-libNeuroML

Install from source

You can clone the GitHub repository [https://github.com/NeuralEnsemble/libNeuroML/] and also build libNeuroML from the sources.
For this, you will need git [https://git-scm.com]:

git clone git://github.com/NeuralEnsemble/libNeuroML.git
cd libNeuroML

More details about the git repository and making your own branch/fork are here.
To build and install libNeuroML, you can use the standard install method for Python packages (preferably in a virtual environment):

python setup.py install

To use the latest development version of libNeuroML, switch to the development branch:

git checkout development
sudo python setup.py install

Run an example

Some sample scripts are included in neuroml/examples, e.g. :

cd neuroml/examples
python build_network.py

The standard examples can also be found Examples.

Unit tests

To run unit tests cd to the directory neuroml/test and use the Python unittest module discover method:

cd neuroml/test/
python -m unittest discover

If all tests passed correctly, your output should look something like this:

.......
--
Ran 55 tests in 40.1s

OK

You can also use PyTest to run tests.

pip install pytest
pytest -v --strict -W all

API documentation

The libNeuroML API includes the core NeuroML classes and various utilities.
You can find information on these in the pages below.

	nml Module (NeuroML Core classes)
	List of Component classes

	loaders Module
	ArrayMorphLoader

	NeuroMLHdf5Loader

	NeuroMLLoader

	SWCLoader

	print_()

	read_neuroml2_file()

	read_neuroml2_string()

	writers Module
	ArrayMorphWriter

	NeuroMLHdf5Writer

	NeuroMLWriter

	utils Module
	add_all_to_document()

	append_to_element()

	component_factory()

	ctinfo()

	ctparentinfo()

	get_summary()

	has_segment_fraction_info()

	is_valid_neuroml2()

	main()

	print_summary()

	validate_neuroml2()

	arraymorph Module

nml Module (NeuroML Core classes)

These NeuroML core classes are Python representations of the Component Types defined in the NeuroML standard [https://docs.neuroml.org/Userdocs/NeuroMLv2.html] .
These can be used to build NeuroML models in Python, and these models can then be exported to the standard XML NeuroML representation.
These core classes also contain some utility functions to make it easier for users to carry out common tasks.

Each NeuroML Component Type is represented here as a Python class.
Due to implementation limitations, whereas NeuroML Component Types use lower camel case naming [https://en.wikipedia.org/wiki/Camel_case], the Python classes here use upper camel case naming [https://en.wikipedia.org/wiki/Camel_case].
So, for example, the adExIaFCell Component Type in the NeuroML schema becomes the AdExIaFCell class here, and expTwoSynapse becomes the ExpTwoSynapse class.

The child and children elements that NeuroML Component Types can have are represented in the Python classes as variables.
The variable names, to distinguish them from class names, use snake case [https://en.wikipedia.org/wiki/Snake_case].
So for example, the cell NeuroML Component Type has a corresponding Cell Python class here.
The biophysicalProperties child Component Type in cell is represented as the biophysical_properties list variable in the Cell Python class.
The class signatures list all the child/children elements and text fields that the corresponding Component Type possesses.
To again use the Cell class as an example, the construction signature is this:

class neuroml.nml.nml.Cell(neuro_lex_id=None, id=None, metaid=None, notes=None, properties=None, annotation=None, morphology_attr=None, biophysical_properties_attr=None, morphology=None, biophysical_properties=None, extensiontype_=None, **kwargs_)

As can be seen here, it includes both the biophysical_properties and morphology child elements as variables.

Please see the examples in the NeuroML documentation [https://docs.neuroml.org/Userdocs/GettingStarted.html] to see usage examples of libNeuroML.
Please also note that this module is also included in the top level of the neuroml package, so you can use these classes by importing neuroml:

from neuroml import AdExIaFCell

List of Component classes

This documentation is auto-generated from the NeuroML schema [https://docs.neuroml.org/Userdocs/NeuroMLv2.html].
In case of issues, please refer to the schema documentation for clarifications.
If the schema documentation does not resolve the issue, please contact us [https://docs.neuroml.org/NeuroMLOrg/CommunicationChannels.html].

GeneratedsSuperSuper

	
class neuroml.nml.generatedssupersuper.GeneratedsSuperSuper

	Bases: object

Super class for GeneratedsSuper.

Any bits that must go into every libNeuroML class should go here.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GdsCollector

	
class neuroml.nml.generatedscollector.GdsCollector(messages=None)

	Bases: object

	
add_message(msg)

	

	
clear_messages()

	

	
get_messages()

	

	
print_messages()

	

	
write_messages(outstream)

	

AdExIaFCell

	
class neuroml.nml.nml.AdExIaFCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, C: a Nml2Quantity_capacitance (required) = None, g_l: a Nml2Quantity_conductance (required) = None, EL: a Nml2Quantity_voltage (required) = None, reset: a Nml2Quantity_voltage (required) = None, VT: a Nml2Quantity_voltage (required) = None, thresh: a Nml2Quantity_voltage (required) = None, del_t: a Nml2Quantity_voltage (required) = None, tauw: a Nml2Quantity_time (required) = None, refract: a Nml2Quantity_time (required) = None, a: a Nml2Quantity_conductance (required) = None, b: a Nml2Quantity_current (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseCellMembPotCap

AdExIaFCell – Model based on Brette R and Gerstner W (2005) Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity. J Neurophysiol 94:3637-3642

	Parameters

	
	gL (conductance) –

	EL (voltage) –

	VT (voltage) –

	thresh (voltage) –

	reset (voltage) –

	delT (voltage) –

	tauw (time) –

	refract (time) –

	a (conductance) –

	b (current) –

	C (capacitance) – Total capacitance of the cell membrane

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

AlphaCondSynapse

	
class neuroml.nml.nml.AlphaCondSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, tau_syn: a float (required) = None, e_rev: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: BasePynnSynapse

AlphaCondSynapse – Alpha synapse: rise time and decay time are both tau_syn. Conductance based synapse.

	Parameters

	
	e_rev (none) –

	tau_syn (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

AlphaCurrSynapse

	
class neuroml.nml.nml.AlphaCurrSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, tau_syn: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: BasePynnSynapse

AlphaCurrSynapse – Alpha synapse: rise time and decay time are both tau_syn. Current based synapse.

	Parameters

	tau_syn (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

AlphaCurrentSynapse

	
class neuroml.nml.nml.AlphaCurrentSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, tau: a Nml2Quantity_time (required) = None, ibase: a Nml2Quantity_current (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseCurrentBasedSynapse

AlphaCurrentSynapse – Alpha current synapse: rise time and decay time are both tau.

	Parameters

	
	tau (time) – Time course for rise and decay

	ibase (current) – Baseline current increase after receiving a spike

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

AlphaSynapse

	
class neuroml.nml.nml.AlphaSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, gbase: a Nml2Quantity_conductance (required) = None, erev: a Nml2Quantity_voltage (required) = None, tau: a Nml2Quantity_time (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseConductanceBasedSynapse

AlphaSynapse – Ohmic synapse model where rise time and decay time are both tau. Max conductance reached during this time (assuming zero conductance before) is gbase * weight.

	Parameters

	
	tau (time) – Time course of rise/decay

	gbase (conductance) – Baseline conductance, generally the maximum conductance following a single spike

	erev (voltage) – Reversal potential of the synapse

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Annotation

	
class neuroml.nml.nml.Annotation(anytypeobjs_=None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

Annotation – A structured annotation containing metadata, specifically RDF or property elements

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Base

	
class neuroml.nml.nml.Base(id: a NmlId (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

Base – Anything which can have a unique (within its parent) id of the form NmlId (spaceless combination of letters, numbers and underscore).

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BaseCell

	
class neuroml.nml.nml.BaseCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: Standalone

BaseCell – Base type of any cell (e. g. point neuron like izhikevich2007Cell , or a morphologically detailed Cell with segment s) which can be used in a population

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BaseCellMembPotCap

	
class neuroml.nml.nml.BaseCellMembPotCap(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, C: a Nml2Quantity_capacitance (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseCell

BaseCellMembPotCap – Any cell with a membrane potential v with voltage units and a membrane capacitance C. Also defines exposed value iSyn for current due to external synapses and iMemb for total transmembrane current (usually channel currents plus iSyn)

	Parameters

	C (capacitance) – Total capacitance of the cell membrane

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BaseConductanceBasedSynapse

	
class neuroml.nml.nml.BaseConductanceBasedSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, gbase: a Nml2Quantity_conductance (required) = None, erev: a Nml2Quantity_voltage (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseVoltageDepSynapse

BaseConductanceBasedSynapse – Synapse model which exposes a conductance g in addition to producing a current. Not necessarily ohmic!! cno_0000027

	Parameters

	
	gbase (conductance) – Baseline conductance, generally the maximum conductance following a single spike

	erev (voltage) – Reversal potential of the synapse

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BaseConductanceBasedSynapseTwo

	
class neuroml.nml.nml.BaseConductanceBasedSynapseTwo(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, gbase1: a Nml2Quantity_conductance (required) = None, gbase2: a Nml2Quantity_conductance (required) = None, erev: a Nml2Quantity_voltage (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseVoltageDepSynapse

BaseConductanceBasedSynapseTwo – Synapse model suited for a sum of two expTwoSynapses which exposes a conductance g in addition to producing a current. Not necessarily ohmic!! cno_0000027

	Parameters

	
	gbase1 (conductance) – Baseline conductance 1

	gbase2 (conductance) – Baseline conductance 2

	erev (voltage) – Reversal potential of the synapse

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BaseConnection

	
class neuroml.nml.nml.BaseConnection(id: a NmlId (required) = None, neuro_lex_id: a NeuroLexId (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseNonNegativeIntegerId

BaseConnection – Base of all synaptic connections (chemical/electrical/analog, etc.) inside projections

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BaseConnectionNewFormat

	
class neuroml.nml.nml.BaseConnectionNewFormat(id: a NmlId (required) = None, neuro_lex_id: a NeuroLexId (optional) = None, pre_cell: a string (required) = None, pre_segment: a NonNegativeInteger (optional) = '0', pre_fraction_along: a ZeroToOne (optional) = '0.5', post_cell: a string (required) = None, post_segment: a NonNegativeInteger (optional) = '0', post_fraction_along: a ZeroToOne (optional) = '0.5', extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseConnection

BaseConnectionNewFormat – Base of all synaptic connections with preCell, postSegment, etc.
See BaseConnectionOldFormat

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BaseConnectionOldFormat

	
class neuroml.nml.nml.BaseConnectionOldFormat(id: a NmlId (required) = None, neuro_lex_id: a NeuroLexId (optional) = None, pre_cell_id: a string (required) = None, pre_segment_id: a NonNegativeInteger (optional) = '0', pre_fraction_along: a ZeroToOne (optional) = '0.5', post_cell_id: a string (required) = None, post_segment_id: a NonNegativeInteger (optional) = '0', post_fraction_along: a ZeroToOne (optional) = '0.5', extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseConnection

BaseConnectionOldFormat – Base of all synaptic connections with preCellId, postSegmentId, etc.
Note: this is not the best name for these attributes, since Id is superfluous, hence BaseConnectionNewFormat

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BaseCurrentBasedSynapse

	
class neuroml.nml.nml.BaseCurrentBasedSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseSynapse

BaseCurrentBasedSynapse – Synapse model which produces a synaptic current.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BaseNonNegativeIntegerId

	
class neuroml.nml.nml.BaseNonNegativeIntegerId(id: a NmlId (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

BaseNonNegativeIntegerId – Anything which can have a unique (within its parent) id, which must be an integer zero or greater.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BaseProjection

	
class neuroml.nml.nml.BaseProjection(id: a NmlId (required) = None, presynaptic_population: a NmlId (required) = None, postsynaptic_population: a NmlId (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: Base

BaseProjection – Base for projection (set of synaptic connections) between two populations

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BasePynnSynapse

	
class neuroml.nml.nml.BasePynnSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, tau_syn: a float (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseSynapse

BasePynnSynapse – Base type for all PyNN synapses. Note, the current I produced is dimensionless, but it requires a membrane potential v with dimension voltage

	Parameters

	tau_syn (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BaseSynapse

	
class neuroml.nml.nml.BaseSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: Standalone

BaseSynapse – Base type for all synapses, i. e. ComponentTypes which produce a current (dimension current) and change Dynamics in response to an incoming event. cno_0000009

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BaseVoltageDepSynapse

	
class neuroml.nml.nml.BaseVoltageDepSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseSynapse

BaseVoltageDepSynapse – Base type for synapses with a dependence on membrane potential

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BaseWithoutId

	
class neuroml.nml.nml.BaseWithoutId(extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: GeneratedsSuper

BaseWithoutId – Base element without ID specified yet, e.g. for an element with a particular requirement on its id which does not comply with NmlId (e.g. Segment needs nonNegativeInteger).

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BiophysicalProperties

	
class neuroml.nml.nml.BiophysicalProperties(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, membrane_properties: a MembraneProperties (required) = None, intracellular_properties: a IntracellularProperties (optional) = None, extracellular_properties: a ExtracellularProperties (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

BiophysicalProperties – The biophysical properties of the cell , including the membraneProperties and the intracellularProperties

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BiophysicalProperties2CaPools

	
class neuroml.nml.nml.BiophysicalProperties2CaPools(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, membrane_properties2_ca_pools: a MembraneProperties2CaPools (required) = None, intracellular_properties2_ca_pools: a IntracellularProperties2CaPools (optional) = None, extracellular_properties: a ExtracellularProperties (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

BiophysicalProperties2CaPools – The biophysical properties of the cell , including the membraneProperties2CaPools and the intracellularProperties2CaPools for a cell with two Ca pools

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BlockMechanism

	
class neuroml.nml.nml.BlockMechanism(type: a BlockTypes (required) = None, species: a NmlId (required) = None, block_concentration: a Nml2Quantity_concentration (required) = None, scaling_conc: a Nml2Quantity_concentration (required) = None, scaling_volt: a Nml2Quantity_voltage (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

BlockingPlasticSynapse

	
class neuroml.nml.nml.BlockingPlasticSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, gbase: a Nml2Quantity_conductance (required) = None, erev: a Nml2Quantity_voltage (required) = None, tau_decay: a Nml2Quantity_time (required) = None, tau_rise: a Nml2Quantity_time (required) = None, plasticity_mechanism: a PlasticityMechanism (optional) = None, block_mechanism: a BlockMechanism (optional) = None, gds_collector_=None, **kwargs_)

	Bases: ExpTwoSynapse

BlockingPlasticSynapse – Biexponential synapse that allows for optional block and plasticity mechanisms, which can be expressed as child elements.

	Parameters

	
	tauRise (time) –

	tauDecay (time) –

	gbase (conductance) – Baseline conductance, generally the maximum conductance following a single spike

	erev (voltage) – Reversal potential of the synapse

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Case

	
class neuroml.nml.nml.Case(condition: a string (optional) = None, value: a string (required) = None, gds_collector_=None, **kwargs_)

	Bases: GeneratedsSuper

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Cell

	
class neuroml.nml.nml.Cell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, morphology_attr: a NmlId (optional) = None, biophysical_properties_attr: a NmlId (optional) = None, morphology: a Morphology (optional) = None, biophysical_properties: a BiophysicalProperties (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseCell

Cell – Cell with segment s specified in a morphology element along with details on its biophysicalProperties . NOTE: this can only be correctly simulated using jLEMS when there is a single segment in the cell, and v of this cell represents the membrane potential in that isopotential segment.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
add_channel_density(nml_cell_doc, cd_id, ion_channel, cond_density, erev='0.0 mV', group_id='all', ion='non_specific', ion_chan_def_file='')

	Add channel density.

	Parameters

	
	nml_cell_doc (NeuroMLDocument) – cell NeuroML document to which channel density is to be added

	cd_id (str) – id for channel density

	ion_channel (str) – name of ion channel

	cond_density (str) – value of conductance density with units

	erev (str) – value of reversal potential with units

	group_id (str) – segment groups to add to

	ion (str) – name of ion

	ion_chan_def_file (str) – path to NeuroML2 file defining the ion channel, if empty, it assumes the channel is defined in the same file

	
add_channel_density_v(channel_density_type, nml_cell_doc, ion_chan_def_file='', **kwargs)

	Generic function to add channel density components to a Cell.

	Parameters

	
	channel_density_type (str) – type of channel density to add.
See https://docs.neuroml.org/Userdocs/Schemas/Cells.html for the
complete list.

	nml_cell_doc (NeuroMLDocument) – cell NeuroML document to which channel density is to be added

	ion_chan_def_file (str) – path to NeuroML2 file defining the ion channel, if empty, it assumes the channel is defined in the same file

	kwargs (Any) – named arguments for required channel density type

	Returns

	None

	
add_intracellular_property(property_name, **kwargs)

	Generic function to add an intracellular property to the cell.

For a full list of membrane properties, see:
https://docs.neuroml.org/Userdocs/Schemas/Cells.html?#intracellularproperties

	Parameters

	
	property_name (str) – name of intracellular property to add

	kwargs (Any) – named arguments for intracellular property to be added

	Returns

	None

	
add_membrane_property(property_name, **kwargs)

	Generic function to add a membrane property to the cell.

For a full list of membrane properties, see:
https://docs.neuroml.org/Userdocs/Schemas/Cells.html?#membraneproperties

Please also see specific functions in this module, which are designed to be
easier to use than this generic function.

	Parameters

	
	property_name (str) – name of membrane to add

	kwargs (Any) – named arguments for membrane property to be added

	Returns

	None

	
add_segment(prox, dist, seg_id=None, name=None, parent=None, fraction_along=1.0, group_id=None, use_convention=True, seg_type=None, reorder_segment_groups=True)

	Add a segment to the cell, to the provided segment group, creating
it if required.

	Parameters

	
	prox (list with 4 float entries: [x, y, z, diameter]) – proximal segment information

	dist (list with 4 float entries: [x, y, z, diameter]) – dist segment information

	seg_id (str) – explicit ID to set for segment
When not provided, the function will automatically add an ID based
on the number of segments already included in the cell. It is best
to either always set an explicit ID or let the function set it
automatically, but not to mix the two. A ValueError is raised if
a segment with the provided ID already exists

	name (str) – name of segment
If a name is given, it is used.
If no name is given, but a segment group is provided, the segment
is named: “Seg<number>_<group name>” where <number> is the number
of the segment in the segment group. (to be read as “segment
<number> in <group>”; the group name should indicate the type here)
If no name is given, and no segment group is provided, the segment
is simply named: “Seg<segment id>”.

	parent (SegmentParent) – parent segment

	fraction_along (float) – where the new segment is connected to the parent (0: distal point, 1: proximal point)

	group_id (str) – id of segment group to add the segment to
If a segment group with this id does not exist, a new segment group
will be created.

The suggested convention is: axon_, soma_, dend_ for axonal,
somatic, and dendritic segment groups respectively.

Note that a newly created segment group will not be marked as an
unbranched segment group. If you wish to add a segment to an
unbranched segment group, please create one using
add_unbranched_segment_group and then add segments to it.

	use_convention (bool) – whether the segment or its group should be added
to the global segment groups. The seg_type notes what global
group this segment or its segment group should also be added to.

	reorder_segment_groups (bool) – whether the groups should be reordered
to put the default segment groups last after the segment has been
added.
This is required for a valid NeuroML file because segment groups
included in the default groups should be declared before they are
used in the default groups. When adding lots of segments, one may
want to only reorder at the end of the process instead of after
each segment is added.

This is only relevant if use_convention=True.

	Seg_type

	type of segment (“axon”, “dendrite”, “soma”)
If use_convention is True, and a group_id is provided, the
segment group will also be added to the default segment groups if
it has not been previously added. If group_id is None, the
segment will be added to the default groups instead.

If use_convention is False, this is unused.

	Returns

	the created segment

	Return type

	Segment

	Raises

	ValueError – if seg_id is provided and a segment with this ID
already exists

	
add_segment_group(group_id)

	Add a new general segment group.

The segments included in this group do not need to be contiguous. This
segment group will not be marked as a section using the required
NeuroLex ID.

	Parameters

	group_id (str) – ID of segment group

	Returns

	new segment group

	Return type

	SegmentGroup

	
add_unbranched_segment_group(group_id)

	Add a new unbranched segment group.

This is similar to the add_segment_group method, but this segment
group will be used to store contiguous segments, which form an
unbranched section of a cell.

	Parameters

	group_id (str) – ID of segment group

	Returns

	new segment group

	Return type

	SegmentGroup

	
add_unbranched_segments(points, parent=None, fraction_along=1.0, group_id=None, use_convention=True, seg_type=None)

	Add an unbranched list of segments to the cell.

The list of points will include the first proximal point where this
should be joined to the cell, followed by a list of distal points:

|-----|-----|-----|------|.....---|
p1 d1 d2 d3 d4 d N-1

So, a list of N points will create a list of N-1 segments

The list of points will be of the form:

[[x1, y1, z1, d1], [x2, y2, z2, d2] ...]

Please ensure that the first point, p1, is correctly set to ensure that
this segment list is correctly connected to the rest of the cell.

	Parameters

	
	points (list of [x, y, z, d] points) – 3D points to create the segments

	parent (SegmentParent) – parent segment where first segment of list is to be attached

	fraction_along (float) – where the new segment list is connected to the parent (0: distal point, 1: proximal point)
Note that the second and following segments will all be added at the
distal point of the previous segment

	group_id (SegmentGroup) – segment group to add the segment to
if a segment group does not already exist, it will be created

	use_convention (bool) – whether helper segment groups should be created using the default convention
See the documentation of the add_segment method for more information
on the convention

	seg_type (str) – type of segments (“axon”, “soma”, “dendrite”)

	Returns

	the segment group containing this new list of segments

	Return type

	SegmentGroup

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
create_unbranched_segment_group_branches(root_segment_id: int, use_convention: bool = True)

	Organise the segments of the cell into new segment groups that each
form a single contiguous unbranched cell branch.

Note that the first segment (root segment) of a branch must have a proximal
point that connects it to the rest of the neuronal morphology. If, when
constructing these branches, a root segment is found that does not include
a proximal point, one will be added using the get_actual_proximal method.

No other changes will be made to any segments, or to any pre-existing
segment groups.

	Parameters

	
	root_segment_id (int) – id of segment considered the root of the tree,
generally the first soma segment

	use_convention (bool) – toggle using NeuroML convention for segment groups

	Returns

	modified cell with new section groups

	Return type

	neuroml.Cell

	
get_actual_proximal(segment_id)

	Get the proximal point of a segment.

If the proximal for the segment is set to None, calculate the proximal
on the parent using fraction_along and return it.

	Parameters

	segment_id – ID of segment

	Returns

	proximal point

	
get_all_segments_in_group(segment_group, assume_all_means_all=True)

	Get all the segments in a segment group of the cell.

	Parameters

	
	segment_group – segment group to get all segments of

	assume_all_means_all – return all segments if the “all” segment
group wasn’t explicitly defined

	Returns

	list of segment ids

	Return type

	list[int]

	Raises

	Exception – if no segment group is found in the cell.

	
get_ordered_segments_in_groups(group_list, check_parentage=False, include_cumulative_lengths=False, include_path_lengths=False, path_length_metric='Path Length from root')

	Get ordered list of segments in specified groups

	Parameters

	
	group_list (str or list) – a group id or list of groups to get segments from

	check_parentage (bool) – verify parentage

	include_commulative_lengths – also include cummulative lengths

	include_path_lengths (bool) – also include path lengths

	path_length_metric (str) – metric to use for path length (“Path Length
from root” is currently the only supported option, and the default)

	Returns

	dictionary of segments with additional information depending
on what parameters were used:

	Raises

	Exception if check_parentage is True and parentage cannot be verified

	
get_segment(segment_id)

	Get segment object by its id

	Parameters

	segment_id – ID of segment

	Returns

	segment

	Raises

	ValueError – if the segment is not found in the cell

	
get_segment_adjacency_list()

	Get the adjacency list of all segments in the cell morphology.
Returns a dict where each key is a parent segment, and the value is the
list of its children segments.

Segment without children (leaf segments) are not included as parents in the
adjacency list.

	Returns

	dict with parent segments as keys and their children as values

	Return type

	dict

	
get_segment_group(sg_id)

	Return the SegmentGroup object for the specified segment group id.

	Parameters

	sg_id (str) – id of segment group to find

	Returns

	SegmentGroup object of specified ID

	Raises

	ValueError – if segment group is not found in cell

	
get_segment_groups_by_substring(substring)

	Get a dictionary of segment group IDs and the segment groups matching the specified substring

	Parameters

	substring (str) – substring to match

	Returns

	dictionary with segment group ID as key, and segment group as value

	Raises

	ValueError – if no matching segment groups are found in cell

	
get_segment_ids_vs_segments()

	Get a dictionary of segment IDs and the segments in the cell.

	Returns

	dictionary with segment ID as key, and segment as value

	
get_segment_length(segment_id)

	Get the length of the segment.

	Parameters

	segment_id – ID of segment

	Returns

	length of segment

	
get_segment_surface_area(segment_id)

	Get the surface area of the segment.

	Parameters

	segment_id – ID of the segment

	Returns

	surface area of segment

	
get_segment_volume(segment_id)

	Get volume of segment

	Parameters

	segment_id – ID of the segment

	Returns

	volume of the segment

	
get_segments_by_substring(substring)

	Get a dictionary of segment IDs and the segment matching the specified substring

	Parameters

	substring (str) – substring to match

	Returns

	dictionary with segment ID as key, and segment as value

	Raises

	Exception – if no segments are found

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
neuro_lex_ids = {'axon': 'GO:0030424', 'dend': 'GO:0030425', 'section': 'sao864921383', 'soma': 'GO:0043025'}

	

	
optimise_segment_group(seg_group_id)

	Optimise segment group with id seg_group_id.

	Parameters

	seg_group_id (str) – id of segment group to optimise

	
optimise_segment_groups()

	Optimise all segment groups in the cell.

This will:

	deduplicate members and includes in segment groups

	remove members that have already been included using a segment group

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
reorder_segment_groups()

	Move default segment groups to the end.

This is required so that the segment groups included in the default
groups are defined before they are used.

	Returns

	None

	
set_init_memb_potential(v, group_id='all')

	Set the initial membrane potential of the cell.

	Parameters

	
	v (str) – value to set for membrane potential with units

	group_id (str) – id of segment group to modify

	
set_resistivity(resistivity, group_id='all') → None

	Set the resistivity of the cell

	Parameters

	group_id (str) – segment group to modify

	
set_specific_capacitance(spec_cap, group_id='all')

	Set the specific capacitance for the cell.

	Parameters

	
	spec_cap (str) – value of specific capacitance with units

	group_id (str) – segment group to modify

	
set_spike_thresh(v, group_id='all')

	Set the spike threshold of the cell.

	Parameters

	
	v (str) – value to set for spike threshold with units

	group_id (str) – id of segment group to modify

	
setup_nml_cell(use_convention=True, overwrite=False)

	Correctly initialise a NeuroML cell.

To be called after a new component has been created to initialise the
cell with these properties:

	Morphology: id=”morphology”

	BiophysicalProperties: id=”biophys”:

	MembraneProperties

	IntracellularProperties

If use_convention is True, it also creates some default SegmentGroups for
convenience:

	“all”, “soma_group”, “dendrite_group”, “axon_group” which
are used by other helper functions to include all, soma, dendrite, and
axon segments respectively.

Note that since this cell does not currently include a segment in its
morphology, it is not a valid NeuroML construct. Use the add_segment
and add_unbranched_segments functions to add segments and branches.
They will also populate the default segment groups.

	Parameters

	
	id (str) – id of the cell

	use_convention (bool) – whether helper segment groups should be created using the default convention

	overwrite (bool) – overwrite existing components

	Returns

	None

	Return type

	None

	
summary()

	Print cell summary.

Currently prints:

	id of cell

	any notes

	number of segments

	number of segment groups

TODO: extend to show more information about the cell that may be useful
to users.

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Cell2CaPools

	
class neuroml.nml.nml.Cell2CaPools(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, morphology_attr: a NmlId (optional) = None, biophysical_properties_attr: a NmlId (optional) = None, morphology: a Morphology (optional) = None, biophysical_properties: a BiophysicalProperties (optional) = None, biophysical_properties2_ca_pools: a BiophysicalProperties2CaPools (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Cell

Cell2CaPools – Variant of cell with two independent Ca2+ pools. Cell with segment s specified in a morphology element along with details on its biophysicalProperties . NOTE: this can only be correctly simulated using jLEMS when there is a single segment in the cell, and v of this cell represents the membrane potential in that isopotential segment.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
add_channel_density(nml_cell_doc, cd_id, ion_channel, cond_density, erev='0.0 mV', group_id='all', ion='non_specific', ion_chan_def_file='')

	Add channel density.

	Parameters

	
	nml_cell_doc (NeuroMLDocument) – cell NeuroML document to which channel density is to be added

	cd_id (str) – id for channel density

	ion_channel (str) – name of ion channel

	cond_density (str) – value of conductance density with units

	erev (str) – value of reversal potential with units

	group_id (str) – segment groups to add to

	ion (str) – name of ion

	ion_chan_def_file (str) – path to NeuroML2 file defining the ion channel, if empty, it assumes the channel is defined in the same file

	
add_channel_density_v(channel_density_type, nml_cell_doc, ion_chan_def_file='', **kwargs)

	Generic function to add channel density components to a Cell.

	Parameters

	
	channel_density_type (str) – type of channel density to add.
See https://docs.neuroml.org/Userdocs/Schemas/Cells.html for the
complete list.

	nml_cell_doc (NeuroMLDocument) – cell NeuroML document to which channel density is to be added

	ion_chan_def_file (str) – path to NeuroML2 file defining the ion channel, if empty, it assumes the channel is defined in the same file

	kwargs (Any) – named arguments for required channel density type

	Returns

	None

	
add_intracellular_property(property_name, **kwargs)

	Generic function to add an intracellular property to the cell.

For a full list of membrane properties, see:
https://docs.neuroml.org/Userdocs/Schemas/Cells.html?#intracellularproperties

	Parameters

	
	property_name (str) – name of intracellular property to add

	kwargs (Any) – named arguments for intracellular property to be added

	Returns

	None

	
add_membrane_property(property_name, **kwargs)

	Generic function to add a membrane property to the cell.

For a full list of membrane properties, see:
https://docs.neuroml.org/Userdocs/Schemas/Cells.html?#membraneproperties

Please also see specific functions in this module, which are designed to be
easier to use than this generic function.

	Parameters

	
	property_name (str) – name of membrane to add

	kwargs (Any) – named arguments for membrane property to be added

	Returns

	None

	
add_segment(prox, dist, seg_id=None, name=None, parent=None, fraction_along=1.0, group_id=None, use_convention=True, seg_type=None, reorder_segment_groups=True)

	Add a segment to the cell, to the provided segment group, creating
it if required.

	Parameters

	
	prox (list with 4 float entries: [x, y, z, diameter]) – proximal segment information

	dist (list with 4 float entries: [x, y, z, diameter]) – dist segment information

	seg_id (str) – explicit ID to set for segment
When not provided, the function will automatically add an ID based
on the number of segments already included in the cell. It is best
to either always set an explicit ID or let the function set it
automatically, but not to mix the two. A ValueError is raised if
a segment with the provided ID already exists

	name (str) – name of segment
If a name is given, it is used.
If no name is given, but a segment group is provided, the segment
is named: “Seg<number>_<group name>” where <number> is the number
of the segment in the segment group. (to be read as “segment
<number> in <group>”; the group name should indicate the type here)
If no name is given, and no segment group is provided, the segment
is simply named: “Seg<segment id>”.

	parent (SegmentParent) – parent segment

	fraction_along (float) – where the new segment is connected to the parent (0: distal point, 1: proximal point)

	group_id (str) – id of segment group to add the segment to
If a segment group with this id does not exist, a new segment group
will be created.

The suggested convention is: axon_, soma_, dend_ for axonal,
somatic, and dendritic segment groups respectively.

Note that a newly created segment group will not be marked as an
unbranched segment group. If you wish to add a segment to an
unbranched segment group, please create one using
add_unbranched_segment_group and then add segments to it.

	use_convention (bool) – whether the segment or its group should be added
to the global segment groups. The seg_type notes what global
group this segment or its segment group should also be added to.

	reorder_segment_groups (bool) – whether the groups should be reordered
to put the default segment groups last after the segment has been
added.
This is required for a valid NeuroML file because segment groups
included in the default groups should be declared before they are
used in the default groups. When adding lots of segments, one may
want to only reorder at the end of the process instead of after
each segment is added.

This is only relevant if use_convention=True.

	Seg_type

	type of segment (“axon”, “dendrite”, “soma”)
If use_convention is True, and a group_id is provided, the
segment group will also be added to the default segment groups if
it has not been previously added. If group_id is None, the
segment will be added to the default groups instead.

If use_convention is False, this is unused.

	Returns

	the created segment

	Return type

	Segment

	Raises

	ValueError – if seg_id is provided and a segment with this ID
already exists

	
add_segment_group(group_id)

	Add a new general segment group.

The segments included in this group do not need to be contiguous. This
segment group will not be marked as a section using the required
NeuroLex ID.

	Parameters

	group_id (str) – ID of segment group

	Returns

	new segment group

	Return type

	SegmentGroup

	
add_unbranched_segment_group(group_id)

	Add a new unbranched segment group.

This is similar to the add_segment_group method, but this segment
group will be used to store contiguous segments, which form an
unbranched section of a cell.

	Parameters

	group_id (str) – ID of segment group

	Returns

	new segment group

	Return type

	SegmentGroup

	
add_unbranched_segments(points, parent=None, fraction_along=1.0, group_id=None, use_convention=True, seg_type=None)

	Add an unbranched list of segments to the cell.

The list of points will include the first proximal point where this
should be joined to the cell, followed by a list of distal points:

|-----|-----|-----|------|.....---|
p1 d1 d2 d3 d4 d N-1

So, a list of N points will create a list of N-1 segments

The list of points will be of the form:

[[x1, y1, z1, d1], [x2, y2, z2, d2] ...]

Please ensure that the first point, p1, is correctly set to ensure that
this segment list is correctly connected to the rest of the cell.

	Parameters

	
	points (list of [x, y, z, d] points) – 3D points to create the segments

	parent (SegmentParent) – parent segment where first segment of list is to be attached

	fraction_along (float) – where the new segment list is connected to the parent (0: distal point, 1: proximal point)
Note that the second and following segments will all be added at the
distal point of the previous segment

	group_id (SegmentGroup) – segment group to add the segment to
if a segment group does not already exist, it will be created

	use_convention (bool) – whether helper segment groups should be created using the default convention
See the documentation of the add_segment method for more information
on the convention

	seg_type (str) – type of segments (“axon”, “soma”, “dendrite”)

	Returns

	the segment group containing this new list of segments

	Return type

	SegmentGroup

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
create_unbranched_segment_group_branches(root_segment_id: int, use_convention: bool = True)

	Organise the segments of the cell into new segment groups that each
form a single contiguous unbranched cell branch.

Note that the first segment (root segment) of a branch must have a proximal
point that connects it to the rest of the neuronal morphology. If, when
constructing these branches, a root segment is found that does not include
a proximal point, one will be added using the get_actual_proximal method.

No other changes will be made to any segments, or to any pre-existing
segment groups.

	Parameters

	
	root_segment_id (int) – id of segment considered the root of the tree,
generally the first soma segment

	use_convention (bool) – toggle using NeuroML convention for segment groups

	Returns

	modified cell with new section groups

	Return type

	neuroml.Cell

	
get_actual_proximal(segment_id)

	Get the proximal point of a segment.

If the proximal for the segment is set to None, calculate the proximal
on the parent using fraction_along and return it.

	Parameters

	segment_id – ID of segment

	Returns

	proximal point

	
get_all_segments_in_group(segment_group, assume_all_means_all=True)

	Get all the segments in a segment group of the cell.

	Parameters

	
	segment_group – segment group to get all segments of

	assume_all_means_all – return all segments if the “all” segment
group wasn’t explicitly defined

	Returns

	list of segment ids

	Return type

	list[int]

	Raises

	Exception – if no segment group is found in the cell.

	
get_ordered_segments_in_groups(group_list, check_parentage=False, include_cumulative_lengths=False, include_path_lengths=False, path_length_metric='Path Length from root')

	Get ordered list of segments in specified groups

	Parameters

	
	group_list (str or list) – a group id or list of groups to get segments from

	check_parentage (bool) – verify parentage

	include_commulative_lengths – also include cummulative lengths

	include_path_lengths (bool) – also include path lengths

	path_length_metric (str) – metric to use for path length (“Path Length
from root” is currently the only supported option, and the default)

	Returns

	dictionary of segments with additional information depending
on what parameters were used:

	Raises

	Exception if check_parentage is True and parentage cannot be verified

	
get_segment(segment_id)

	Get segment object by its id

	Parameters

	segment_id – ID of segment

	Returns

	segment

	Raises

	ValueError – if the segment is not found in the cell

	
get_segment_adjacency_list()

	Get the adjacency list of all segments in the cell morphology.
Returns a dict where each key is a parent segment, and the value is the
list of its children segments.

Segment without children (leaf segments) are not included as parents in the
adjacency list.

	Returns

	dict with parent segments as keys and their children as values

	Return type

	dict

	
get_segment_group(sg_id)

	Return the SegmentGroup object for the specified segment group id.

	Parameters

	sg_id (str) – id of segment group to find

	Returns

	SegmentGroup object of specified ID

	Raises

	ValueError – if segment group is not found in cell

	
get_segment_groups_by_substring(substring)

	Get a dictionary of segment group IDs and the segment groups matching the specified substring

	Parameters

	substring (str) – substring to match

	Returns

	dictionary with segment group ID as key, and segment group as value

	Raises

	ValueError – if no matching segment groups are found in cell

	
get_segment_ids_vs_segments()

	Get a dictionary of segment IDs and the segments in the cell.

	Returns

	dictionary with segment ID as key, and segment as value

	
get_segment_length(segment_id)

	Get the length of the segment.

	Parameters

	segment_id – ID of segment

	Returns

	length of segment

	
get_segment_surface_area(segment_id)

	Get the surface area of the segment.

	Parameters

	segment_id – ID of the segment

	Returns

	surface area of segment

	
get_segment_volume(segment_id)

	Get volume of segment

	Parameters

	segment_id – ID of the segment

	Returns

	volume of the segment

	
get_segments_by_substring(substring)

	Get a dictionary of segment IDs and the segment matching the specified substring

	Parameters

	substring (str) – substring to match

	Returns

	dictionary with segment ID as key, and segment as value

	Raises

	Exception – if no segments are found

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
neuro_lex_ids = {'axon': 'GO:0030424', 'dend': 'GO:0030425', 'section': 'sao864921383', 'soma': 'GO:0043025'}

	

	
optimise_segment_group(seg_group_id)

	Optimise segment group with id seg_group_id.

	Parameters

	seg_group_id (str) – id of segment group to optimise

	
optimise_segment_groups()

	Optimise all segment groups in the cell.

This will:

	deduplicate members and includes in segment groups

	remove members that have already been included using a segment group

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
reorder_segment_groups()

	Move default segment groups to the end.

This is required so that the segment groups included in the default
groups are defined before they are used.

	Returns

	None

	
set_init_memb_potential(v, group_id='all')

	Set the initial membrane potential of the cell.

	Parameters

	
	v (str) – value to set for membrane potential with units

	group_id (str) – id of segment group to modify

	
set_resistivity(resistivity, group_id='all') → None

	Set the resistivity of the cell

	Parameters

	group_id (str) – segment group to modify

	
set_specific_capacitance(spec_cap, group_id='all')

	Set the specific capacitance for the cell.

	Parameters

	
	spec_cap (str) – value of specific capacitance with units

	group_id (str) – segment group to modify

	
set_spike_thresh(v, group_id='all')

	Set the spike threshold of the cell.

	Parameters

	
	v (str) – value to set for spike threshold with units

	group_id (str) – id of segment group to modify

	
setup_nml_cell(use_convention=True, overwrite=False)

	Correctly initialise a NeuroML cell.

To be called after a new component has been created to initialise the
cell with these properties:

	Morphology: id=”morphology”

	BiophysicalProperties: id=”biophys”:

	MembraneProperties

	IntracellularProperties

If use_convention is True, it also creates some default SegmentGroups for
convenience:

	“all”, “soma_group”, “dendrite_group”, “axon_group” which
are used by other helper functions to include all, soma, dendrite, and
axon segments respectively.

Note that since this cell does not currently include a segment in its
morphology, it is not a valid NeuroML construct. Use the add_segment
and add_unbranched_segments functions to add segments and branches.
They will also populate the default segment groups.

	Parameters

	
	id (str) – id of the cell

	use_convention (bool) – whether helper segment groups should be created using the default convention

	overwrite (bool) – overwrite existing components

	Returns

	None

	Return type

	None

	
summary()

	Print cell summary.

Currently prints:

	id of cell

	any notes

	number of segments

	number of segment groups

TODO: extend to show more information about the cell that may be useful
to users.

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

CellSet

	
class neuroml.nml.nml.CellSet(id: a NmlId (required) = None, select: a string (required) = None, anytypeobjs_=None, gds_collector_=None, **kwargs_)

	Bases: Base

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ChannelDensity

	
class neuroml.nml.nml.ChannelDensity(id: a NmlId (required) = None, ion_channel: a NmlId (required) = None, cond_density: a Nml2Quantity_conductanceDensity (optional) = None, erev: a Nml2Quantity_voltage (required) = None, segment_groups: a NmlId (optional) = 'all', segments: a NonNegativeInteger (optional) = None, ion: a NmlId (required) = None, variable_parameters: list of VariableParameter(s) (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: Base

ChannelDensity – Specifies a time varying ohmic conductance density, gDensity, which is distributed on an area of the cell (specified in membraneProperties) with fixed reversal potential erev producing a current density iDensity

	Parameters

	
	erev (voltage) – The reversal potential of the current produced

	condDensity (conductanceDensity) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ChannelDensityGHK

	
class neuroml.nml.nml.ChannelDensityGHK(id: a NmlId (required) = None, ion_channel: a NmlId (required) = None, permeability: a Nml2Quantity_permeability (required) = None, segment_groups: a NmlId (optional) = 'all', segments: a NonNegativeInteger (optional) = None, ion: a NmlId (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

ChannelDensityGHK – Specifies a time varying conductance density, gDensity, which is distributed on an area of the cell, producing a current density iDensity and whose reversal potential is calculated from the Goldman Hodgkin Katz equation. Hard coded for Ca only! See https://github.com/OpenSourceBrain/ghk-nernst.

	Parameters

	permeability (permeability) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ChannelDensityGHK2

	
class neuroml.nml.nml.ChannelDensityGHK2(id: a NmlId (required) = None, ion_channel: a NmlId (required) = None, cond_density: a Nml2Quantity_conductanceDensity (optional) = None, segment_groups: a NmlId (optional) = 'all', segments: a NonNegativeInteger (optional) = None, ion: a NmlId (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

ChannelDensityGHK2 – Time varying conductance density, gDensity, which is distributed on an area of the cel
l, producing a current density iDensity. Modified version of Jaffe et al. 1994 (used also in Lawrence et al. 2006). See https://github.com/OpenSourceBrain/ghk-nernst.

	Parameters

	condDensity (conductanceDensity) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ChannelDensityNernst

	
class neuroml.nml.nml.ChannelDensityNernst(id: a NmlId (required) = None, ion_channel: a NmlId (required) = None, cond_density: a Nml2Quantity_conductanceDensity (optional) = None, segment_groups: a NmlId (optional) = 'all', segments: a NonNegativeInteger (optional) = None, ion: a NmlId (required) = None, variable_parameters: list of VariableParameter(s) (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: Base

ChannelDensityNernst – Specifies a time varying conductance density, gDensity, which is distributed on an area of the cell, producing a current density iDensity and whose reversal potential is calculated from the Nernst equation. Hard coded for Ca only! See https://github.com/OpenSourceBrain/ghk-nernst.

	Parameters

	condDensity (conductanceDensity) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ChannelDensityNernstCa2

	
class neuroml.nml.nml.ChannelDensityNernstCa2(id: a NmlId (required) = None, ion_channel: a NmlId (required) = None, cond_density: a Nml2Quantity_conductanceDensity (optional) = None, segment_groups: a NmlId (optional) = 'all', segments: a NonNegativeInteger (optional) = None, ion: a NmlId (required) = None, variable_parameters: list of VariableParameter(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: ChannelDensityNernst

ChannelDensityNernstCa2 – This component is similar to the original component type channelDensityNernst but it is changed in order to have a reversal potential that depends on a second independent Ca++ pool (ca2). See https://github.com/OpenSourceBrain/ghk-nernst.

	Parameters

	condDensity (conductanceDensity) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ChannelDensityNonUniform

	
class neuroml.nml.nml.ChannelDensityNonUniform(id: a NmlId (required) = None, ion_channel: a NmlId (required) = None, erev: a Nml2Quantity_voltage (required) = None, ion: a NmlId (required) = None, variable_parameters: list of VariableParameter(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Base

ChannelDensityNonUniform – Specifies a time varying ohmic conductance density, which is distributed on a region of the cell. The conductance density of the channel is not uniform, but is set using the variableParameter . Note, there is no dynamical description of this in LEMS yet, as this type only makes sense for multicompartmental cells. A ComponentType for this needs to be present to enable export of NeuroML 2 multicompartmental cells via LEMS/jNeuroML to NEURON

	Parameters

	erev (voltage) – The reversal potential of the current produced

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ChannelDensityNonUniformGHK

	
class neuroml.nml.nml.ChannelDensityNonUniformGHK(id: a NmlId (required) = None, ion_channel: a NmlId (required) = None, ion: a NmlId (required) = None, variable_parameters: list of VariableParameter(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Base

ChannelDensityNonUniformGHK – Specifies a time varying conductance density, which is distributed on a region of the cell, and whose current is calculated from the Goldman-Hodgkin-Katz equation. Hard coded for Ca only!. The conductance density of the channel is not uniform, but is set using the variableParameter . Note, there is no dynamical description of this in LEMS yet, as this type only makes sense for multicompartmental cells. A ComponentType for this needs to be present to enable export of NeuroML 2 multicompartmental cells via LEMS/jNeuroML to NEURON

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ChannelDensityNonUniformNernst

	
class neuroml.nml.nml.ChannelDensityNonUniformNernst(id: a NmlId (required) = None, ion_channel: a NmlId (required) = None, ion: a NmlId (required) = None, variable_parameters: list of VariableParameter(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Base

ChannelDensityNonUniformNernst – Specifies a time varying conductance density, which is distributed on a region of the cell, and whose reversal potential is calculated from the Nernst equation. Hard coded for Ca only!. The conductance density of the channel is not uniform, but is set using the variableParameter . Note, there is no dynamical description of this in LEMS yet, as this type only makes sense for multicompartmental cells. A ComponentType for this needs to be present to enable export of NeuroML 2 multicompartmental cells via LEMS/jNeuroML to NEURON

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ChannelDensityVShift

	
class neuroml.nml.nml.ChannelDensityVShift(id: a NmlId (required) = None, ion_channel: a NmlId (required) = None, cond_density: a Nml2Quantity_conductanceDensity (optional) = None, erev: a Nml2Quantity_voltage (required) = None, segment_groups: a NmlId (optional) = 'all', segments: a NonNegativeInteger (optional) = None, ion: a NmlId (required) = None, variable_parameters: list of VariableParameter(s) (optional) = None, v_shift: a Nml2Quantity_voltage (required) = None, gds_collector_=None, **kwargs_)

	Bases: ChannelDensity

ChannelDensityVShift – Same as channelDensity , but with a vShift parameter to change voltage activation of gates. The exact usage of vShift in expressions for rates is determined by the individual gates.

	Parameters

	
	vShift (voltage) –

	erev (voltage) – The reversal potential of the current produced

	condDensity (conductanceDensity) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ChannelPopulation

	
class neuroml.nml.nml.ChannelPopulation(id: a NmlId (required) = None, ion_channel: a NmlId (required) = None, number: a NonNegativeInteger (required) = None, erev: a Nml2Quantity_voltage (required) = None, segment_groups: a NmlId (optional) = 'all', segments: a NonNegativeInteger (optional) = None, ion: a NmlId (required) = None, variable_parameters: list of VariableParameter(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Base

ChannelPopulation – Population of a number of ohmic ion channels. These each produce a conductance channelg across a reversal potential erev, giving a total current i. Note that active membrane currents are more frequently specified as a density over an area of the cell using channelDensity

	Parameters

	
	number (none) – The number of channels present. This will be multiplied by the time varying conductance of the individual ion channel (which extends baseIonChannel) to produce the total conductance

	erev (voltage) – The reversal potential of the current produced

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ClosedState

	
class neuroml.nml.nml.ClosedState(id: a NmlId (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

ClosedState – A KSState with relativeConductance of 0

	Parameters

	relativeConductance (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ComponentType

	
class neuroml.nml.nml.ComponentType(name: a string (required) = None, extends: a string (optional) = None, description: a string (optional) = None, Property: list of Property(s) (optional) = None, Parameter: list of Parameter(s) (optional) = None, Constant: list of Constant(s) (optional) = None, Exposure: list of Exposure(s) (optional) = None, Requirement: list of Requirement(s) (optional) = None, InstanceRequirement: list of InstanceRequirement(s) (optional) = None, Dynamics: list of Dynamics(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: GeneratedsSuper

ComponentType – Contains an extension to NeuroML by creating custom LEMS ComponentType.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

CompoundInput

	
class neuroml.nml.nml.CompoundInput(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, pulse_generators: list of PulseGenerator(s) (optional) = None, sine_generators: list of SineGenerator(s) (optional) = None, ramp_generators: list of RampGenerator(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

CompoundInput – Generates a current which is the sum of all its child basePointCurrent element, e. g. can be a combination of pulseGenerator , sineGenerator elements producing a single i. Scaled by weight, if set

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

CompoundInputDL

	
class neuroml.nml.nml.CompoundInputDL(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, pulse_generator_dls: list of PulseGeneratorDL(s) (optional) = None, sine_generator_dls: list of SineGeneratorDL(s) (optional) = None, ramp_generator_dls: list of RampGeneratorDL(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

CompoundInputDL – Generates a current which is the sum of all its child basePointCurrentDL elements, e. g. can be a combination of pulseGeneratorDL , sineGeneratorDL elements producing a single i. Scaled by weight, if set

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ConcentrationModel_D

	
class neuroml.nml.nml.ConcentrationModel_D(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, ion: a NmlId (required) = None, resting_conc: a Nml2Quantity_concentration (required) = None, decay_constant: a Nml2Quantity_time (required) = None, shell_thickness: a Nml2Quantity_length (required) = None, type: a string (required) = 'decayingPoolConcentrationModel', gds_collector_=None, **kwargs_)

	Bases: DecayingPoolConcentrationModel

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ConditionalDerivedVariable

	
class neuroml.nml.nml.ConditionalDerivedVariable(name: a string (required) = None, dimension: a string (required) = None, description: a string (optional) = None, exposure: a string (optional) = None, Case: list of Case(s) (required) = None, gds_collector_=None, **kwargs_)

	Bases: NamedDimensionalVariable

ConditionalDerivedVariable – LEMS ComponentType for ConditionalDerivedVariable

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Connection

	
class neuroml.nml.nml.Connection(id: a NonNegativeInteger (required) = None, neuro_lex_id: a NeuroLexId (optional) = None, pre_cell_id: a string (required) = None, pre_segment_id: a NonNegativeInteger (optional) = '0', pre_fraction_along: a ZeroToOne (optional) = '0.5', post_cell_id: a string (required) = None, post_segment_id: a NonNegativeInteger (optional) = '0', post_fraction_along: a ZeroToOne (optional) = '0.5', gds_collector_=None, **kwargs_)

	Bases: BaseConnectionOldFormat

Connection – Event connection directly between named components, which gets processed via a new instance of a synapse component which is created on the target component. Normally contained inside a projection element.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
get_post_cell_id()

	Get the ID of the post-synaptic cell

	Returns

	ID of post-synaptic cell

	Return type

	str

	
get_post_fraction_along()

	Get post-synaptic fraction along information

	
get_post_info()

	Get post-synaptic information summary

	
get_post_segment_id()

	Get the ID of the post-synpatic segment

	Returns

	ID of post-synaptic segment.

	Return type

	str

	
get_pre_cell_id()

	Get the ID of the pre-synaptic cell

	Returns

	ID of pre-synaptic cell

	Return type

	str

	
get_pre_fraction_along()

	Get pre-synaptic fraction along information

	
get_pre_info()

	Get pre-synaptic information summary

	
get_pre_segment_id()

	Get the ID of the pre-synpatic segment

	Returns

	ID of pre-synaptic segment.

	Return type

	str

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ConnectionWD

	
class neuroml.nml.nml.ConnectionWD(id: a NonNegativeInteger (required) = None, neuro_lex_id: a NeuroLexId (optional) = None, pre_cell_id: a string (required) = None, pre_segment_id: a NonNegativeInteger (optional) = '0', pre_fraction_along: a ZeroToOne (optional) = '0.5', post_cell_id: a string (required) = None, post_segment_id: a NonNegativeInteger (optional) = '0', post_fraction_along: a ZeroToOne (optional) = '0.5', weight: a float (required) = None, delay: a Nml2Quantity_time (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseConnectionOldFormat

ConnectionWD – Event connection between named components, which gets processed via a new instance of a synapse component which is created on the target component, includes setting of weight and delay for the synaptic connection

	Parameters

	
	weight (none) –

	delay (time) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
get_delay_in_ms()

	Get connection delay in milli seconds

	Returns

	connection delay in milli seconds

	Return type

	float

	
get_post_cell_id()

	Get the ID of the post-synaptic cell

	Returns

	ID of post-synaptic cell

	Return type

	str

	
get_post_fraction_along()

	Get post-synaptic fraction along information

	
get_post_info()

	Get post-synaptic information summary

	
get_post_segment_id()

	Get the ID of the post-synpatic segment

	Returns

	ID of post-synaptic segment.

	Return type

	str

	
get_pre_cell_id()

	Get the ID of the pre-synaptic cell

	Returns

	ID of pre-synaptic cell

	Return type

	str

	
get_pre_fraction_along()

	Get pre-synaptic fraction along information

	
get_pre_info()

	Get pre-synaptic information summary

	
get_pre_segment_id()

	Get the ID of the pre-synpatic segment

	Returns

	ID of pre-synaptic segment.

	Return type

	str

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Constant

	
class neuroml.nml.nml.Constant(name: a string (required) = None, dimension: a string (required) = None, value: a Nml2Quantity (required) = None, description: a string (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

Constant – LEMS ComponentType for Constant.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ContinuousConnection

	
class neuroml.nml.nml.ContinuousConnection(id: a NonNegativeInteger (required) = None, neuro_lex_id: a NeuroLexId (optional) = None, pre_cell: a string (required) = None, pre_segment: a NonNegativeInteger (optional) = '0', pre_fraction_along: a ZeroToOne (optional) = '0.5', post_cell: a string (required) = None, post_segment: a NonNegativeInteger (optional) = '0', post_fraction_along: a ZeroToOne (optional) = '0.5', pre_component: a NmlId (required) = None, post_component: a NmlId (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseConnectionNewFormat

ContinuousConnection – An instance of a connection in a continuousProjection between presynapticPopulation to another postsynapticPopulation through a preComponent at the start and postComponent at the end. Can be used for analog synapses.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
get_post_cell_id()

	Get the ID of the post-synaptic cell

	Returns

	ID of post-synaptic cell

	Return type

	str

	
get_post_fraction_along()

	Get post-synaptic fraction along information

	
get_post_info()

	Get post-synaptic information summary

	
get_post_segment_id()

	Get the ID of the post-synpatic segment

	Returns

	ID of post-synaptic segment.

	Return type

	str

	
get_pre_cell_id()

	Get the ID of the pre-synaptic cell

	Returns

	ID of pre-synaptic cell

	Return type

	str

	
get_pre_fraction_along()

	Get pre-synaptic fraction along information

	
get_pre_info()

	Get pre-synaptic information summary

	
get_pre_segment_id()

	Get the ID of the pre-synpatic segment

	Returns

	ID of pre-synaptic segment.

	Return type

	str

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ContinuousConnectionInstance

	
class neuroml.nml.nml.ContinuousConnectionInstance(id: a NonNegativeInteger (required) = None, neuro_lex_id: a NeuroLexId (optional) = None, pre_cell: a string (required) = None, pre_segment: a NonNegativeInteger (optional) = '0', pre_fraction_along: a ZeroToOne (optional) = '0.5', post_cell: a string (required) = None, post_segment: a NonNegativeInteger (optional) = '0', post_fraction_along: a ZeroToOne (optional) = '0.5', pre_component: a NmlId (required) = None, post_component: a NmlId (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: ContinuousConnection

ContinuousConnectionInstance – An instance of a connection in a continuousProjection between presynapticPopulation to another postsynapticPopulation through a preComponent at the start and postComponent at the end. Populations need to be of type populationList and contain instance and location elements. Can be used for analog synapses.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
get_post_cell_id()

	Get the ID of the post-synaptic cell

	Returns

	ID of post-synaptic cell

	Return type

	str

	
get_post_fraction_along()

	Get post-synaptic fraction along information

	
get_post_info()

	Get post-synaptic information summary

	
get_post_segment_id()

	Get the ID of the post-synpatic segment

	Returns

	ID of post-synaptic segment.

	Return type

	str

	
get_pre_cell_id()

	Get the ID of the pre-synaptic cell

	Returns

	ID of pre-synaptic cell

	Return type

	str

	
get_pre_fraction_along()

	Get pre-synaptic fraction along information

	
get_pre_info()

	Get pre-synaptic information summary

	
get_pre_segment_id()

	Get the ID of the pre-synpatic segment

	Returns

	ID of pre-synaptic segment.

	Return type

	str

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ContinuousConnectionInstanceW

	
class neuroml.nml.nml.ContinuousConnectionInstanceW(id: a NonNegativeInteger (required) = None, neuro_lex_id: a NeuroLexId (optional) = None, pre_cell: a string (required) = None, pre_segment: a NonNegativeInteger (optional) = '0', pre_fraction_along: a ZeroToOne (optional) = '0.5', post_cell: a string (required) = None, post_segment: a NonNegativeInteger (optional) = '0', post_fraction_along: a ZeroToOne (optional) = '0.5', pre_component: a NmlId (required) = None, post_component: a NmlId (required) = None, weight: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: ContinuousConnectionInstance

ContinuousConnectionInstanceW – An instance of a connection in a continuousProjection between presynapticPopulation to another postsynapticPopulation through a preComponent at the start and postComponent at the end. Populations need to be of type populationList and contain instance and location elements. Can be used for analog synapses. Includes setting of weight for the connection

	Parameters

	weight (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
get_post_cell_id()

	Get the ID of the post-synaptic cell

	Returns

	ID of post-synaptic cell

	Return type

	str

	
get_post_fraction_along()

	Get post-synaptic fraction along information

	
get_post_info()

	Get post-synaptic information summary

	
get_post_segment_id()

	Get the ID of the post-synpatic segment

	Returns

	ID of post-synaptic segment.

	Return type

	str

	
get_pre_cell_id()

	Get the ID of the pre-synaptic cell

	Returns

	ID of pre-synaptic cell

	Return type

	str

	
get_pre_fraction_along()

	Get pre-synaptic fraction along information

	
get_pre_info()

	Get pre-synaptic information summary

	
get_pre_segment_id()

	Get the ID of the pre-synpatic segment

	Returns

	ID of pre-synaptic segment.

	Return type

	str

	
get_weight()

	Get weight.

If weight is not set, the default value of 1.0 is returned.

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ContinuousProjection

	
class neuroml.nml.nml.ContinuousProjection(id: a NmlId (required) = None, presynaptic_population: a NmlId (required) = None, postsynaptic_population: a NmlId (required) = None, continuous_connections: list of ContinuousConnection(s) (optional) = None, continuous_connection_instances: list of ContinuousConnectionInstance(s) (optional) = None, continuous_connection_instance_ws: list of ContinuousConnectionInstanceW(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseProjection

ContinuousProjection – A projection between presynapticPopulation and postsynapticPopulation through components preComponent at the start and postComponent at the end of a continuousConnection or continuousConnectionInstance . Can be used for analog synapses.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
exportHdf5(h5file, h5Group)

	Export to HDF5 file.

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

DecayingPoolConcentrationModel

	
class neuroml.nml.nml.DecayingPoolConcentrationModel(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, ion: a NmlId (required) = None, resting_conc: a Nml2Quantity_concentration (required) = None, decay_constant: a Nml2Quantity_time (required) = None, shell_thickness: a Nml2Quantity_length (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: Standalone

DecayingPoolConcentrationModel – Model of an intracellular buffering mechanism for ion (currently hard Coded to be calcium, due to requirement for iCa) which has a baseline level restingConc and tends to this value with time course decayConstant. The ion is assumed to occupy a shell inside the membrane of thickness shellThickness.

	Parameters

	
	restingConc (concentration) –

	decayConstant (time) –

	shellThickness (length) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

DerivedVariable

	
class neuroml.nml.nml.DerivedVariable(name: a string (required) = None, dimension: a string (required) = None, description: a string (optional) = None, exposure: a string (optional) = None, value: a string (optional) = None, select: a string (optional) = None, gds_collector_=None, **kwargs_)

	Bases: NamedDimensionalVariable

DerivedVariable – LEMS ComponentType for DerivedVariable

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

DistalDetails

	
class neuroml.nml.nml.DistalDetails(normalization_end: a double (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

DoubleSynapse

	
class neuroml.nml.nml.DoubleSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, synapse1: a NmlId (required) = None, synapse2: a NmlId (required) = None, synapse1_path: a string (required) = None, synapse2_path: a string (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseVoltageDepSynapse

DoubleSynapse – Synapse consisting of two independent synaptic mechanisms (e. g. AMPA-R and NMDA-R), which can be easily colocated in connections

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Dynamics

	
class neuroml.nml.nml.Dynamics(StateVariable: list of StateVariable(s) (optional) = None, DerivedVariable: list of DerivedVariable(s) (optional) = None, ConditionalDerivedVariable: list of ConditionalDerivedVariable(s) (optional) = None, TimeDerivative: list of TimeDerivative(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: GeneratedsSuper

Dynamics – LEMS ComponentType for Dynamics

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

EIF_cond_alpha_isfa_ista

	
class neuroml.nml.nml.EIF_cond_alpha_isfa_ista(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required) = None, i_offset: a float (required) = None, tau_syn_E: a float (required) = None, tau_syn_I: a float (required) = None, v_init: a float (required) = None, tau_m: a float (required) = None, tau_refrac: a float (required) = None, v_reset: a float (required) = None, v_rest: a float (required) = None, v_thresh: a float (required) = None, e_rev_E: a float (required) = None, e_rev_I: a float (required) = None, a: a float (required) = None, b: a float (required) = None, delta_T: a float (required) = None, tau_w: a float (required) = None, v_spike: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: EIF_cond_exp_isfa_ista

EIF_cond_alpha_isfa_ista – Adaptive exponential integrate and fire neuron according to Brette R and Gerstner W (2005) with alpha-function-shaped post-synaptic conductance

	Parameters

	
	v_spike (none) –

	delta_T (none) –

	tau_w (none) –

	a (none) –

	b (none) –

	e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_refrac (none) –

	v_thresh (none) –

	tau_m (none) –

	v_rest (none) –

	v_reset (none) –

	cm (none) –

	i_offset (none) –

	tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	v_init (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

EIF_cond_exp_isfa_ista

	
class neuroml.nml.nml.EIF_cond_exp_isfa_ista(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required) = None, i_offset: a float (required) = None, tau_syn_E: a float (required) = None, tau_syn_I: a float (required) = None, v_init: a float (required) = None, tau_m: a float (required) = None, tau_refrac: a float (required) = None, v_reset: a float (required) = None, v_rest: a float (required) = None, v_thresh: a float (required) = None, e_rev_E: a float (required) = None, e_rev_I: a float (required) = None, a: a float (required) = None, b: a float (required) = None, delta_T: a float (required) = None, tau_w: a float (required) = None, v_spike: a float (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: basePyNNIaFCondCell

EIF_cond_exp_isfa_ista – Adaptive exponential integrate and fire neuron according to Brette R and Gerstner W (2005) with exponentially-decaying post-synaptic conductance

	Parameters

	
	v_spike (none) –

	delta_T (none) –

	tau_w (none) –

	a (none) –

	b (none) –

	e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_refrac (none) –

	v_thresh (none) –

	tau_m (none) –

	v_rest (none) –

	v_reset (none) –

	cm (none) –

	i_offset (none) –

	tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	v_init (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ElectricalConnection

	
class neuroml.nml.nml.ElectricalConnection(id: a NonNegativeInteger (required) = None, neuro_lex_id: a NeuroLexId (optional) = None, pre_cell: a string (required) = None, pre_segment: a NonNegativeInteger (optional) = '0', pre_fraction_along: a ZeroToOne (optional) = '0.5', post_cell: a string (required) = None, post_segment: a NonNegativeInteger (optional) = '0', post_fraction_along: a ZeroToOne (optional) = '0.5', synapse: a NmlId (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseConnectionNewFormat

ElectricalConnection – To enable connections between populations through gap junctions.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
get_post_cell_id()

	Get the ID of the post-synaptic cell

	Returns

	ID of post-synaptic cell

	Return type

	str

	
get_post_fraction_along()

	Get post-synaptic fraction along information

	
get_post_info()

	Get post-synaptic information summary

	
get_post_segment_id()

	Get the ID of the post-synpatic segment

	Returns

	ID of post-synaptic segment.

	Return type

	str

	
get_pre_cell_id()

	Get the ID of the pre-synaptic cell

	Returns

	ID of pre-synaptic cell

	Return type

	str

	
get_pre_fraction_along()

	Get pre-synaptic fraction along information

	
get_pre_info()

	Get pre-synaptic information summary

	
get_pre_segment_id()

	Get the ID of the pre-synpatic segment

	Returns

	ID of pre-synaptic segment.

	Return type

	str

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ElectricalConnectionInstance

	
class neuroml.nml.nml.ElectricalConnectionInstance(id: a NonNegativeInteger (required) = None, neuro_lex_id: a NeuroLexId (optional) = None, pre_cell: a string (required) = None, pre_segment: a NonNegativeInteger (optional) = '0', pre_fraction_along: a ZeroToOne (optional) = '0.5', post_cell: a string (required) = None, post_segment: a NonNegativeInteger (optional) = '0', post_fraction_along: a ZeroToOne (optional) = '0.5', synapse: a NmlId (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: ElectricalConnection

ElectricalConnectionInstance – To enable connections between populations through gap junctions. Populations need to be of type populationList and contain instance and location elements.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
get_post_cell_id()

	Get the ID of the post-synaptic cell

	Returns

	ID of post-synaptic cell

	Return type

	str

	
get_post_fraction_along()

	Get post-synaptic fraction along information

	
get_post_info()

	Get post-synaptic information summary

	
get_post_segment_id()

	Get the ID of the post-synpatic segment

	Returns

	ID of post-synaptic segment.

	Return type

	str

	
get_pre_cell_id()

	Get the ID of the pre-synaptic cell

	Returns

	ID of pre-synaptic cell

	Return type

	str

	
get_pre_fraction_along()

	Get pre-synaptic fraction along information

	
get_pre_info()

	Get pre-synaptic information summary

	
get_pre_segment_id()

	Get the ID of the pre-synpatic segment

	Returns

	ID of pre-synaptic segment.

	Return type

	str

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ElectricalConnectionInstanceW

	
class neuroml.nml.nml.ElectricalConnectionInstanceW(id: a NonNegativeInteger (required) = None, neuro_lex_id: a NeuroLexId (optional) = None, pre_cell: a string (required) = None, pre_segment: a NonNegativeInteger (optional) = '0', pre_fraction_along: a ZeroToOne (optional) = '0.5', post_cell: a string (required) = None, post_segment: a NonNegativeInteger (optional) = '0', post_fraction_along: a ZeroToOne (optional) = '0.5', synapse: a NmlId (required) = None, weight: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: ElectricalConnectionInstance

ElectricalConnectionInstanceW – To enable connections between populations through gap junctions. Populations need to be of type populationList and contain instance and location elements. Includes setting of weight for the connection

	Parameters

	weight (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
get_post_cell_id()

	Get the ID of the post-synaptic cell

	Returns

	ID of post-synaptic cell

	Return type

	str

	
get_post_fraction_along()

	Get post-synaptic fraction along information

	
get_post_info()

	Get post-synaptic information summary

	
get_post_segment_id()

	Get the ID of the post-synpatic segment

	Returns

	ID of post-synaptic segment.

	Return type

	str

	
get_pre_cell_id()

	Get the ID of the pre-synaptic cell

	Returns

	ID of pre-synaptic cell

	Return type

	str

	
get_pre_fraction_along()

	Get pre-synaptic fraction along information

	
get_pre_info()

	Get pre-synaptic information summary

	
get_pre_segment_id()

	Get the ID of the pre-synpatic segment

	Returns

	ID of pre-synaptic segment.

	Return type

	str

	
get_weight()

	Get the weight of the connection

If a weight is not set (or is set to None), returns the default value
of 1.0.

	Returns

	weight of connection or 1.0 if not set

	Return type

	float

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ElectricalProjection

	
class neuroml.nml.nml.ElectricalProjection(id: a NmlId (required) = None, presynaptic_population: a NmlId (required) = None, postsynaptic_population: a NmlId (required) = None, electrical_connections: list of ElectricalConnection(s) (optional) = None, electrical_connection_instances: list of ElectricalConnectionInstance(s) (optional) = None, electrical_connection_instance_ws: list of ElectricalConnectionInstanceW(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseProjection

ElectricalProjection – A projection between presynapticPopulation to another postsynapticPopulation through gap junctions.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
exportHdf5(h5file, h5Group)

	Export to HDF5 file.

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ExpCondSynapse

	
class neuroml.nml.nml.ExpCondSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, tau_syn: a float (required) = None, e_rev: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: BasePynnSynapse

ExpCondSynapse – Conductance based synapse with instantaneous rise and single exponential decay (with time constant tau_syn)

	Parameters

	
	e_rev (none) –

	tau_syn (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ExpCurrSynapse

	
class neuroml.nml.nml.ExpCurrSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, tau_syn: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: BasePynnSynapse

ExpCurrSynapse – Current based synapse with instantaneous rise and single exponential decay (with time constant tau_syn)

	Parameters

	tau_syn (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ExpOneSynapse

	
class neuroml.nml.nml.ExpOneSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, gbase: a Nml2Quantity_conductance (required) = None, erev: a Nml2Quantity_voltage (required) = None, tau_decay: a Nml2Quantity_time (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseConductanceBasedSynapse

ExpOneSynapse – Ohmic synapse model whose conductance rises instantaneously by (gbase * weight) on receiving an event, and which decays exponentially to zero with time course tauDecay

	Parameters

	
	tauDecay (time) – Time course of decay

	gbase (conductance) – Baseline conductance, generally the maximum conductance following a single spike

	erev (voltage) – Reversal potential of the synapse

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ExpThreeSynapse

	
class neuroml.nml.nml.ExpThreeSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, gbase1: a Nml2Quantity_conductance (required) = None, gbase2: a Nml2Quantity_conductance (required) = None, erev: a Nml2Quantity_voltage (required) = None, tau_decay1: a Nml2Quantity_time (required) = None, tau_decay2: a Nml2Quantity_time (required) = None, tau_rise: a Nml2Quantity_time (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseConductanceBasedSynapseTwo

ExpThreeSynapse – Ohmic synapse similar to expTwoSynapse but consisting of two components that can differ in decay times and max conductances but share the same rise time.

	Parameters

	
	tauRise (time) –

	tauDecay1 (time) –

	tauDecay2 (time) –

	gbase1 (conductance) – Baseline conductance 1

	gbase2 (conductance) – Baseline conductance 2

	erev (voltage) – Reversal potential of the synapse

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ExpTwoSynapse

	
class neuroml.nml.nml.ExpTwoSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, gbase: a Nml2Quantity_conductance (required) = None, erev: a Nml2Quantity_voltage (required) = None, tau_decay: a Nml2Quantity_time (required) = None, tau_rise: a Nml2Quantity_time (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseConductanceBasedSynapse

ExpTwoSynapse – Ohmic synapse model whose conductance waveform on receiving an event has a rise time of tauRise and a decay time of tauDecay. Max conductance reached during this time (assuming zero conductance before) is gbase * weight.

	Parameters

	
	tauRise (time) –

	tauDecay (time) –

	gbase (conductance) – Baseline conductance, generally the maximum conductance following a single spike

	erev (voltage) – Reversal potential of the synapse

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ExplicitInput

	
class neuroml.nml.nml.ExplicitInput(target: a string (required) = None, input: a string (required) = None, destination: a string (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

ExplicitInput – An explicit input (anything which extends basePointCurrent) to a target cell in a population

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
get_fraction_along()

	Get fraction along.

Returns 0.5 is fraction_along was not set.

	
get_segment_id()

	Get the ID of the segment.

Returns 0 if segment_id was not set.

	
get_target_cell_id()

	Get target cell ID

	
get_target_population()

	Get target population.

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Exposure

	
class neuroml.nml.nml.Exposure(name: a string (required) = None, dimension: a string (required) = None, description: a string (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

Exposure – LEMS Exposure (ComponentType property)

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ExtracellularProperties

	
class neuroml.nml.nml.ExtracellularProperties(id: a NmlId (required) = None, species: list of Species(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Base

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ExtracellularPropertiesLocal

	
class neuroml.nml.nml.ExtracellularPropertiesLocal(id: a NmlId (required) = None, species: list of Species(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Base

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

FitzHughNagumo1969Cell

	
class neuroml.nml.nml.FitzHughNagumo1969Cell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, a: a Nml2Quantity_none (required) = None, b: a Nml2Quantity_none (required) = None, I: a Nml2Quantity_none (required) = None, phi: a Nml2Quantity_none (required) = None, V0: a Nml2Quantity_none (required) = None, W0: a Nml2Quantity_none (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseCell

FitzHughNagumo1969Cell – The Fitzhugh Nagumo model is a two-dimensional simplification of the Hodgkin-Huxley model of spike generation in squid giant axons. This system was suggested by FitzHugh (FitzHugh R. [1961]: Impulses and physiological states in theoretical models of nerve membrane. Biophysical J. 1:445-466), who called it ” Bonhoeffer-van der Pol model “, and the equivalent circuit by Nagumo et al. (Nagumo J. , Arimoto S. , and Yoshizawa S. [1962] An active pulse transmission line simulating nerve axon. Proc IRE. 50:2061-2070. 1962). This version corresponds to the one described in FitzHugh R. [1969]: Mathematical models of excitation and propagation in nerve. Chapter 1 (pp. 1-85 in H. P. Schwan, ed. Biological Engineering, McGraw-Hill Book Co. , N. Y.)

	Parameters

	
	a (none) –

	b (none) –

	I (none) – plays the role of an external injected current

	phi (none) –

	V0 (none) –

	W0 (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

FitzHughNagumoCell

	
class neuroml.nml.nml.FitzHughNagumoCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, I: a Nml2Quantity_none (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseCell

FitzHughNagumoCell – Simple dimensionless model of spiking cell from FitzHugh and Nagumo. Superseded by fitzHughNagumo1969Cell (See https://github.com/NeuroML/NeuroML2/issues/42)

	Parameters

	I (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

FixedFactorConcentrationModel

	
class neuroml.nml.nml.FixedFactorConcentrationModel(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, ion: a NmlId (required) = None, resting_conc: a Nml2Quantity_concentration (required) = None, decay_constant: a Nml2Quantity_time (required) = None, rho: a Nml2Quantity_rhoFactor (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

FixedFactorConcentrationModel – Model of buffering of concentration of an ion (currently hard coded to be calcium, due to requirement for iCa) which has a baseline level restingConc and tends to this value with time course decayConstant. A fixed factor rho is used to scale the incoming current independently of the size of the compartment to produce a concentration change.

	Parameters

	
	restingConc (concentration) –

	decayConstant (time) –

	rho (rho_factor) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ForwardTransition

	
class neuroml.nml.nml.ForwardTransition(id: a NmlId (required) = None, from_: a NmlId (required) = None, to: a NmlId (required) = None, anytypeobjs_=None, gds_collector_=None, **kwargs_)

	Bases: Base

ForwardTransition – A forward only KSTransition for a gateKS which specifies a rate (type baseHHRate) which follows one of the standard Hodgkin Huxley forms (e. g. HHExpRate , HHSigmoidRate , HHExpLinearRate

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GapJunction

	
class neuroml.nml.nml.GapJunction(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, conductance: a Nml2Quantity_conductance (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseSynapse

GapJunction – Gap junction/single electrical connection

	Parameters

	conductance (conductance) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GateFractional

	
class neuroml.nml.nml.GateFractional(id: a NmlId (required) = None, instances: a PositiveInteger (required) = None, notes: a string (optional) = None, q10_settings: a Q10Settings (optional) = None, sub_gates: list of GateFractionalSubgate(s) (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

GateFractional – Gate composed of subgates contributing with fractional conductance

	Parameters

	instances (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GateFractionalSubgate

	
class neuroml.nml.nml.GateFractionalSubgate(id: a NmlId (required) = None, fractional_conductance: a Nml2Quantity_none (required) = None, notes: a string (optional) = None, q10_settings: a Q10Settings (optional) = None, steady_state: a HHVariable (required) = None, time_course: a HHTime (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GateHHInstantaneous

	
class neuroml.nml.nml.GateHHInstantaneous(id: a NmlId (required) = None, instances: a PositiveInteger (required) = None, notes: a string (optional) = None, steady_state: a HHVariable (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

GateHHInstantaneous – Gate which follows the general Hodgkin Huxley formalism but is instantaneous, so tau = 0 and gate follows exactly inf value

	Parameters

	instances (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GateHHRates

	
class neuroml.nml.nml.GateHHRates(id: a NmlId (required) = None, instances: a PositiveInteger (required) = None, notes: a string (optional) = None, q10_settings: a Q10Settings (optional) = None, forward_rate: a HHRate (required) = None, reverse_rate: a HHRate (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

GateHHRates – Gate which follows the general Hodgkin Huxley formalism

	Parameters

	instances (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GateHHRatesInf

	
class neuroml.nml.nml.GateHHRatesInf(id: a NmlId (required) = None, instances: a PositiveInteger (required) = None, notes: a string (optional) = None, q10_settings: a Q10Settings (optional) = None, forward_rate: a HHRate (required) = None, reverse_rate: a HHRate (required) = None, steady_state: a HHVariable (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

GateHHRatesInf – Gate which follows the general Hodgkin Huxley formalism

	Parameters

	instances (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GateHHRatesTau

	
class neuroml.nml.nml.GateHHRatesTau(id: a NmlId (required) = None, instances: a PositiveInteger (required) = None, notes: a string (optional) = None, q10_settings: a Q10Settings (optional) = None, forward_rate: a HHRate (required) = None, reverse_rate: a HHRate (required) = None, time_course: a HHTime (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

GateHHRatesTau – Gate which follows the general Hodgkin Huxley formalism

	Parameters

	instances (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GateHHRatesTauInf

	
class neuroml.nml.nml.GateHHRatesTauInf(id: a NmlId (required) = None, instances: a PositiveInteger (required) = None, notes: a string (optional) = None, q10_settings: a Q10Settings (optional) = None, forward_rate: a HHRate (required) = None, reverse_rate: a HHRate (required) = None, time_course: a HHTime (required) = None, steady_state: a HHVariable (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

GateHHRatesTauInf – Gate which follows the general Hodgkin Huxley formalism

	Parameters

	instances (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GateHHTauInf

	
class neuroml.nml.nml.GateHHTauInf(id: a NmlId (required) = None, instances: a PositiveInteger (required) = None, notes: a string (optional) = None, q10_settings: a Q10Settings (optional) = None, time_course: a HHTime (required) = None, steady_state: a HHVariable (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

GateHHTauInf – Gate which follows the general Hodgkin Huxley formalism

	Parameters

	instances (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GateHHUndetermined

	
class neuroml.nml.nml.GateHHUndetermined(id: a NmlId (required) = None, instances: a PositiveInteger (required) = None, type: a gateTypes (required) = None, notes: a string (optional) = None, q10_settings: a Q10Settings (optional) = None, forward_rate: a HHRate (optional) = None, reverse_rate: a HHRate (optional) = None, time_course: a HHTime (optional) = None, steady_state: a HHVariable (optional) = None, sub_gates: list of GateFractionalSubgate(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Base

GateHHUndetermined – Note all sub elements for gateHHrates, gateHHratesTau, gateFractional etc. allowed here. Which are valid should be constrained by what type is set

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GateKS

	
class neuroml.nml.nml.GateKS(id: a NmlId (required) = None, instances: a PositiveInteger (required) = None, notes: a string (optional) = None, q10_settings: a Q10Settings (optional) = None, closed_states: list of ClosedState(s) (required) = None, open_states: list of OpenState(s) (required) = None, forward_transition: list of ForwardTransition(s) (required) = None, reverse_transition: list of ReverseTransition(s) (required) = None, tau_inf_transition: list of TauInfTransition(s) (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

GateKS – A gate which consists of multiple KSState s and KSTransition s giving the rates of transition between them

	Parameters

	instances (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GeneratedsSuper

	
class neuroml.nml.nml.GeneratedsSuper

	Bases: GeneratedsSuperSuper

GradedSynapse

	
class neuroml.nml.nml.GradedSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, conductance: a Nml2Quantity_conductance (required) = None, delta: a Nml2Quantity_voltage (required) = None, Vth: a Nml2Quantity_voltage (required) = None, k: a Nml2Quantity_pertime (required) = None, erev: a Nml2Quantity_voltage (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseSynapse

GradedSynapse – Graded/analog synapse. Based on synapse in Methods of http://www. nature.com/neuro/journal/v7/n12/abs/nn1352.html

	Parameters

	
	conductance (conductance) –

	delta (voltage) – Slope of the activation curve

	k (per_time) – Rate constant for transmitter-receptor dissociation rate

	Vth (voltage) – The half-activation voltage of the synapse

	erev (voltage) – The reversal potential of the synapse

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

GridLayout

	
class neuroml.nml.nml.GridLayout(x_size: a nonNegativeInteger (optional) = None, y_size: a nonNegativeInteger (optional) = None, z_size: a nonNegativeInteger (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

HHRate

	
class neuroml.nml.nml.HHRate(type: a NmlId (required) = None, rate: a Nml2Quantity_pertime (optional) = None, midpoint: a Nml2Quantity_voltage (optional) = None, scale: a Nml2Quantity_voltage (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

HHTime

	
class neuroml.nml.nml.HHTime(type: a NmlId (required) = None, rate: a Nml2Quantity_time (optional) = None, midpoint: a Nml2Quantity_voltage (optional) = None, scale: a Nml2Quantity_voltage (optional) = None, tau: a Nml2Quantity_time (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

HHVariable

	
class neuroml.nml.nml.HHVariable(type: a NmlId (required) = None, rate: a float (optional) = None, midpoint: a Nml2Quantity_voltage (optional) = None, scale: a Nml2Quantity_voltage (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

HH_cond_exp

	
class neuroml.nml.nml.HH_cond_exp(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required) = None, i_offset: a float (required) = None, tau_syn_E: a float (required) = None, tau_syn_I: a float (required) = None, v_init: a float (required) = None, v_offset: a float (required) = None, e_rev_E: a float (required) = None, e_rev_I: a float (required) = None, e_rev_K: a float (required) = None, e_rev_Na: a float (required) = None, e_rev_leak: a float (required) = None, g_leak: a float (required) = None, gbar_K: a float (required) = None, gbar_Na: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: basePyNNCell

HH_cond_exp – Single-compartment Hodgkin-Huxley-type neuron with transient sodium and delayed-rectifier potassium currents using the ion channel models from Traub.

	Parameters

	
	gbar_K (none) –

	gbar_Na (none) –

	g_leak (none) –

	e_rev_K (none) –

	e_rev_Na (none) –

	e_rev_leak (none) –

	v_offset (none) –

	e_rev_E (none) –

	e_rev_I (none) –

	cm (none) –

	i_offset (none) –

	tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	v_init (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IF_cond_alpha

	
class neuroml.nml.nml.IF_cond_alpha(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required) = None, i_offset: a float (required) = None, tau_syn_E: a float (required) = None, tau_syn_I: a float (required) = None, v_init: a float (required) = None, tau_m: a float (required) = None, tau_refrac: a float (required) = None, v_reset: a float (required) = None, v_rest: a float (required) = None, v_thresh: a float (required) = None, e_rev_E: a float (required) = None, e_rev_I: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: basePyNNIaFCondCell

IF_cond_alpha – Leaky integrate and fire model with fixed threshold and alpha-function-shaped post-synaptic conductance

	Parameters

	
	e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_refrac (none) –

	v_thresh (none) –

	tau_m (none) –

	v_rest (none) –

	v_reset (none) –

	cm (none) –

	i_offset (none) –

	tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	v_init (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IF_cond_exp

	
class neuroml.nml.nml.IF_cond_exp(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required) = None, i_offset: a float (required) = None, tau_syn_E: a float (required) = None, tau_syn_I: a float (required) = None, v_init: a float (required) = None, tau_m: a float (required) = None, tau_refrac: a float (required) = None, v_reset: a float (required) = None, v_rest: a float (required) = None, v_thresh: a float (required) = None, e_rev_E: a float (required) = None, e_rev_I: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: basePyNNIaFCondCell

IF_cond_exp – Leaky integrate and fire model with fixed threshold and exponentially-decaying post-synaptic conductance

	Parameters

	
	e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_refrac (none) –

	v_thresh (none) –

	tau_m (none) –

	v_rest (none) –

	v_reset (none) –

	cm (none) –

	i_offset (none) –

	tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	v_init (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IF_curr_alpha

	
class neuroml.nml.nml.IF_curr_alpha(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required) = None, i_offset: a float (required) = None, tau_syn_E: a float (required) = None, tau_syn_I: a float (required) = None, v_init: a float (required) = None, tau_m: a float (required) = None, tau_refrac: a float (required) = None, v_reset: a float (required) = None, v_rest: a float (required) = None, v_thresh: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: basePyNNIaFCell

IF_curr_alpha – Leaky integrate and fire model with fixed threshold and alpha-function-shaped post-synaptic current

	Parameters

	
	tau_refrac (none) –

	v_thresh (none) –

	tau_m (none) –

	v_rest (none) –

	v_reset (none) –

	cm (none) –

	i_offset (none) –

	tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	v_init (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IF_curr_exp

	
class neuroml.nml.nml.IF_curr_exp(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required) = None, i_offset: a float (required) = None, tau_syn_E: a float (required) = None, tau_syn_I: a float (required) = None, v_init: a float (required) = None, tau_m: a float (required) = None, tau_refrac: a float (required) = None, v_reset: a float (required) = None, v_rest: a float (required) = None, v_thresh: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: basePyNNIaFCell

IF_curr_exp – Leaky integrate and fire model with fixed threshold and decaying-exponential post-synaptic current

	Parameters

	
	tau_refrac (none) –

	v_thresh (none) –

	tau_m (none) –

	v_rest (none) –

	v_reset (none) –

	cm (none) –

	i_offset (none) –

	tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	v_init (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IafCell

	
class neuroml.nml.nml.IafCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, leak_reversal: a Nml2Quantity_voltage (required) = None, thresh: a Nml2Quantity_voltage (required) = None, reset: a Nml2Quantity_voltage (required) = None, C: a Nml2Quantity_capacitance (required) = None, leak_conductance: a Nml2Quantity_conductance (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseCell

IafCell – Integrate and fire cell with capacitance C, leakConductance and leakReversal

	Parameters

	
	leakConductance (conductance) –

	leakReversal (voltage) –

	thresh (voltage) –

	reset (voltage) –

	C (capacitance) – Total capacitance of the cell membrane

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IafRefCell

	
class neuroml.nml.nml.IafRefCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, leak_reversal: a Nml2Quantity_voltage (required) = None, thresh: a Nml2Quantity_voltage (required) = None, reset: a Nml2Quantity_voltage (required) = None, C: a Nml2Quantity_capacitance (required) = None, leak_conductance: a Nml2Quantity_conductance (required) = None, refract: a Nml2Quantity_time (required) = None, gds_collector_=None, **kwargs_)

	Bases: IafCell

IafRefCell – Integrate and fire cell with capacitance C, leakConductance, leakReversal and refractory period refract

	Parameters

	
	refract (time) –

	leakConductance (conductance) –

	leakReversal (voltage) –

	thresh (voltage) –

	reset (voltage) –

	C (capacitance) – Total capacitance of the cell membrane

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IafTauCell

	
class neuroml.nml.nml.IafTauCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, leak_reversal: a Nml2Quantity_voltage (required) = None, thresh: a Nml2Quantity_voltage (required) = None, reset: a Nml2Quantity_voltage (required) = None, tau: a Nml2Quantity_time (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseCell

IafTauCell – Integrate and fire cell which returns to its leak reversal potential of leakReversal with a time constant tau

	Parameters

	
	leakReversal (voltage) –

	tau (time) –

	thresh (voltage) – The membrane potential at which to emit a spiking event and reset voltage

	reset (voltage) – The value the membrane potential is reset to on spiking

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IafTauRefCell

	
class neuroml.nml.nml.IafTauRefCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, leak_reversal: a Nml2Quantity_voltage (required) = None, thresh: a Nml2Quantity_voltage (required) = None, reset: a Nml2Quantity_voltage (required) = None, tau: a Nml2Quantity_time (required) = None, refract: a Nml2Quantity_time (required) = None, gds_collector_=None, **kwargs_)

	Bases: IafTauCell

IafTauRefCell – Integrate and fire cell which returns to its leak reversal potential of leakReversal with a time course tau. It has a refractory period of refract after spiking

	Parameters

	
	refract (time) –

	leakReversal (voltage) –

	tau (time) –

	thresh (voltage) – The membrane potential at which to emit a spiking event and reset voltage

	reset (voltage) – The value the membrane potential is reset to on spiking

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Include

	
class neuroml.nml.nml.Include(segment_groups: a NmlId (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

Include – Include all members of another segmentGroup in this group

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IncludeType

	
class neuroml.nml.nml.IncludeType(href: a anyURI (required) = None, gds_collector_=None, **kwargs_)

	Bases: GeneratedsSuper

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

InhomogeneousParameter

	
class neuroml.nml.nml.InhomogeneousParameter(id: a NmlId (required) = None, variable: a string (required) = None, metric: a Metric (required) = None, proximal: a ProximalDetails (optional) = None, distal: a DistalDetails (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Base

InhomogeneousParameter – An inhomogeneous parameter specified across the segmentGroup (see variableParameter for usage).

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

InhomogeneousValue

	
class neuroml.nml.nml.InhomogeneousValue(inhomogeneous_parameters: a string (required) = None, value: a string (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

InhomogeneousValue – Specifies the value of an inhomogeneousParameter. For usage see variableParameter

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

InitMembPotential

	
class neuroml.nml.nml.InitMembPotential(value: a Nml2Quantity_voltage (required) = None, segment_groups: a NmlId (optional) = 'all', gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

InitMembPotential – Explicitly set initial membrane potential for the cell

	Parameters

	value (voltage) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Input

	
class neuroml.nml.nml.Input(id: a NonNegativeInteger (required) = None, target: a string (required) = None, destination: a NmlId (required) = None, segment_id: a NonNegativeInteger (optional) = None, fraction_along: a ZeroToOne (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseNonNegativeIntegerId

Input – Specifies a single input to a target, optionally giving the segmentId (default 0) and fractionAlong the segment (default 0. 5).

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
get_fraction_along()

	Get fraction along.

Returns 0.5 is fraction_along was not set.

	
get_segment_id()

	Get the ID of the segment.

Returns 0 if segment_id was not set.

	
get_target_cell_id()

	Get ID of target cell.

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

InputList

	
class neuroml.nml.nml.InputList(id: a NonNegativeInteger (required) = None, populations: a NmlId (required) = None, component: a NmlId (required) = None, input: list of Input(s) (optional) = None, input_ws: list of InputW(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Base

InputList – An explicit list of input s to a population.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
exportHdf5(h5file, h5Group)

	Export to HDF5 file.

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

InputW

	
class neuroml.nml.nml.InputW(id: a NonNegativeInteger (required) = None, target: a string (required) = None, destination: a NmlId (required) = None, segment_id: a NonNegativeInteger (optional) = None, fraction_along: a ZeroToOne (optional) = None, weight: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: Input

InputW – Specifies input lists. Can set weight to scale individual inputs.

	Parameters

	weight (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
get_fraction_along()

	Get fraction along.

Returns 0.5 is fraction_along was not set.

	
get_segment_id()

	Get the ID of the segment.

Returns 0 if segment_id was not set.

	
get_target_cell_id()

	Get ID of target cell.

	
get_weight()

	Get weight.

If weight is not set, the default value of 1.0 is returned.

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Instance

	
class neuroml.nml.nml.Instance(id: a nonNegativeInteger (optional) = None, i: a nonNegativeInteger (optional) = None, j: a nonNegativeInteger (optional) = None, k: a nonNegativeInteger (optional) = None, location: a Location (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

Instance – Specifies a single instance of a component in a population (placed at location).

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

InstanceRequirement

	
class neuroml.nml.nml.InstanceRequirement(name: a string (required) = None, type: a string (required) = None, gds_collector_=None, **kwargs_)

	Bases: GeneratedsSuper

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IntracellularProperties

	
class neuroml.nml.nml.IntracellularProperties(species: list of Species(s) (optional) = None, resistivities: list of Resistivity(s) (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

IntracellularProperties – Biophysical properties related to the intracellular space within the cell , such as the resistivity and the list of ionic species present. caConc and caConcExt are explicitly exposed here to facilitate accessing these values from other Components, even though caConcExt is clearly not an intracellular property

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IntracellularProperties2CaPools

	
class neuroml.nml.nml.IntracellularProperties2CaPools(species: list of Species(s) (optional) = None, resistivities: list of Resistivity(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: IntracellularProperties

IntracellularProperties2CaPools – Variant of intracellularProperties with 2 independent Ca pools

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IonChannel

	
class neuroml.nml.nml.IonChannel(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, q10_conductance_scalings: list of Q10ConductanceScaling(s) (optional) = None, species: a NmlId (optional) = None, type: a channelTypes (optional) = None, conductance: a Nml2Quantity_conductance (optional) = None, gates: list of GateHHUndetermined(s) (optional) = None, gate_hh_rates: list of GateHHRates(s) (optional) = None, gate_h_hrates_taus: list of GateHHRatesTau(s) (optional) = None, gate_hh_tau_infs: list of GateHHTauInf(s) (optional) = None, gate_h_hrates_infs: list of GateHHRatesInf(s) (optional) = None, gate_h_hrates_tau_infs: list of GateHHRatesTauInf(s) (optional) = None, gate_hh_instantaneouses: list of GateHHInstantaneous(s) (optional) = None, gate_fractionals: list of GateFractional(s) (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: IonChannelScalable

IonChannel – Note ionChannel and ionChannelHH are currently functionally identical. This is needed since many existing examples use ionChannel, some use ionChannelHH. NeuroML v2beta4 should remove one of these, probably ionChannelHH.

	Parameters

	conductance (conductance) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IonChannelHH

	
class neuroml.nml.nml.IonChannelHH(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, q10_conductance_scalings: list of Q10ConductanceScaling(s) (optional) = None, species: a NmlId (optional) = None, type: a channelTypes (optional) = None, conductance: a Nml2Quantity_conductance (optional) = None, gates: list of GateHHUndetermined(s) (optional) = None, gate_hh_rates: list of GateHHRates(s) (optional) = None, gate_h_hrates_taus: list of GateHHRatesTau(s) (optional) = None, gate_hh_tau_infs: list of GateHHTauInf(s) (optional) = None, gate_h_hrates_infs: list of GateHHRatesInf(s) (optional) = None, gate_h_hrates_tau_infs: list of GateHHRatesTauInf(s) (optional) = None, gate_hh_instantaneouses: list of GateHHInstantaneous(s) (optional) = None, gate_fractionals: list of GateFractional(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: IonChannel

IonChannelHH – Note ionChannel and ionChannelHH are currently functionally identical. This is needed since many existing examples use ionChannel, some use ionChannelHH. NeuroML v2beta4 should remove one of these, probably ionChannelHH.

	Parameters

	conductance (conductance) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IonChannelKS

	
class neuroml.nml.nml.IonChannelKS(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, species: a NmlId (optional) = None, conductance: a Nml2Quantity_conductance (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, gate_kses: list of GateKS(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

A kinetic scheme based ion channel with multiple gateKS s, each of which consists of multiple KSState s and KSTransition s giving the rates of transition between them
IonChannelKS – A kinetic scheme based ion channel with multiple gateKS s, each of which consists of multiple KSState s and KSTransition s giving the rates of transition between them

	Parameters

	conductance (conductance) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IonChannelScalable

	
class neuroml.nml.nml.IonChannelScalable(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, q10_conductance_scalings: list of Q10ConductanceScaling(s) (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: Standalone

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IonChannelVShift

	
class neuroml.nml.nml.IonChannelVShift(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, q10_conductance_scalings: list of Q10ConductanceScaling(s) (optional) = None, species: a NmlId (optional) = None, type: a channelTypes (optional) = None, conductance: a Nml2Quantity_conductance (optional) = None, gates: list of GateHHUndetermined(s) (optional) = None, gate_hh_rates: list of GateHHRates(s) (optional) = None, gate_h_hrates_taus: list of GateHHRatesTau(s) (optional) = None, gate_hh_tau_infs: list of GateHHTauInf(s) (optional) = None, gate_h_hrates_infs: list of GateHHRatesInf(s) (optional) = None, gate_h_hrates_tau_infs: list of GateHHRatesTauInf(s) (optional) = None, gate_hh_instantaneouses: list of GateHHInstantaneous(s) (optional) = None, gate_fractionals: list of GateFractional(s) (optional) = None, v_shift: a Nml2Quantity_voltage (required) = None, gds_collector_=None, **kwargs_)

	Bases: IonChannel

IonChannelVShift – Same as ionChannel , but with a vShift parameter to change voltage activation of gates. The exact usage of vShift in expressions for rates is determined by the individual gates.

	Parameters

	
	vShift (voltage) –

	conductance (conductance) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Izhikevich2007Cell

	
class neuroml.nml.nml.Izhikevich2007Cell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, C: a Nml2Quantity_capacitance (required) = None, v0: a Nml2Quantity_voltage (required) = None, k: a Nml2Quantity_conductancePerVoltage (required) = None, vr: a Nml2Quantity_voltage (required) = None, vt: a Nml2Quantity_voltage (required) = None, vpeak: a Nml2Quantity_voltage (required) = None, a: a Nml2Quantity_pertime (required) = None, b: a Nml2Quantity_conductance (required) = None, c: a Nml2Quantity_voltage (required) = None, d: a Nml2Quantity_current (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseCellMembPotCap

Izhikevich2007Cell – Cell based on the modified Izhikevich model in Izhikevich 2007, Dynamical systems in neuroscience, MIT Press

	Parameters

	
	v0 (voltage) –

	k (conductance_per_voltage) –

	vr (voltage) –

	vt (voltage) –

	vpeak (voltage) –

	a (per_time) –

	b (conductance) –

	c (voltage) –

	d (current) –

	C (capacitance) – Total capacitance of the cell membrane

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

IzhikevichCell

	
class neuroml.nml.nml.IzhikevichCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, v0: a Nml2Quantity_voltage (required) = None, thresh: a Nml2Quantity_voltage (required) = None, a: a Nml2Quantity_none (required) = None, b: a Nml2Quantity_none (required) = None, c: a Nml2Quantity_none (required) = None, d: a Nml2Quantity_none (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseCell

IzhikevichCell – Cell based on the 2003 model of Izhikevich, see http://izhikevich.org/publications/spikes.htm

	Parameters

	
	v0 (voltage) – Initial membrane potential

	a (none) – Time scale of the recovery variable U

	b (none) – Sensitivity of U to the subthreshold fluctuations of the membrane potential V

	c (none) – After-spike reset value of V

	d (none) – After-spike increase to U

	thresh (voltage) – Spike threshold

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

LEMS_Property

	
class neuroml.nml.nml.LEMS_Property(name: a string (required) = None, dimension: a string (required) = None, description: a string (optional) = None, default_value: a double (optional) = None, gds_collector_=None, **kwargs_)

	Bases: NamedDimensionalType

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Layout

	
class neuroml.nml.nml.Layout(spaces: a NmlId (optional) = None, random: a RandomLayout (required) = None, grid: a GridLayout (required) = None, unstructured: a UnstructuredLayout (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

LinearGradedSynapse

	
class neuroml.nml.nml.LinearGradedSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, conductance: a Nml2Quantity_conductance (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseSynapse

LinearGradedSynapse – Behaves just like a one way gap junction.

	Parameters

	conductance (conductance) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Location

	
class neuroml.nml.nml.Location(x: a float (required) = None, y: a float (required) = None, z: a float (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

Location – Specifies the (x, y, z) location of a single instance of a component in a population

	Parameters

	
	x (none) –

	y (none) –

	z (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Member

	
class neuroml.nml.nml.Member(segments: a NonNegativeInteger (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

Member – A single identified segment which is part of the segmentGroup

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

MembraneProperties

	
class neuroml.nml.nml.MembraneProperties(channel_populations: list of ChannelPopulation(s) (optional) = None, channel_densities: list of ChannelDensity(s) (optional) = None, channel_density_v_shifts: list of ChannelDensityVShift(s) (optional) = None, channel_density_nernsts: list of ChannelDensityNernst(s) (optional) = None, channel_density_ghks: list of ChannelDensityGHK(s) (optional) = None, channel_density_ghk2s: list of ChannelDensityGHK2(s) (optional) = None, channel_density_non_uniforms: list of ChannelDensityNonUniform(s) (optional) = None, channel_density_non_uniform_nernsts: list of ChannelDensityNonUniformNernst(s) (optional) = None, channel_density_non_uniform_ghks: list of ChannelDensityNonUniformGHK(s) (optional) = None, spike_threshes: list of SpikeThresh(s) (optional) = None, specific_capacitances: list of SpecificCapacitance(s) (optional) = None, init_memb_potentials: list of InitMembPotential(s) (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

MembraneProperties – Properties specific to the membrane, such as the populations of channels, channelDensities, specificCapacitance, etc.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

MembraneProperties2CaPools

	
class neuroml.nml.nml.MembraneProperties2CaPools(channel_populations: list of ChannelPopulation(s) (optional) = None, channel_densities: list of ChannelDensity(s) (optional) = None, channel_density_v_shifts: list of ChannelDensityVShift(s) (optional) = None, channel_density_nernsts: list of ChannelDensityNernst(s) (optional) = None, channel_density_ghks: list of ChannelDensityGHK(s) (optional) = None, channel_density_ghk2s: list of ChannelDensityGHK2(s) (optional) = None, channel_density_non_uniforms: list of ChannelDensityNonUniform(s) (optional) = None, channel_density_non_uniform_nernsts: list of ChannelDensityNonUniformNernst(s) (optional) = None, channel_density_non_uniform_ghks: list of ChannelDensityNonUniformGHK(s) (optional) = None, spike_threshes: list of SpikeThresh(s) (optional) = None, specific_capacitances: list of SpecificCapacitance(s) (optional) = None, init_memb_potentials: list of InitMembPotential(s) (optional) = None, channel_density_nernst_ca2s: list of ChannelDensityNernstCa2(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: MembraneProperties

MembraneProperties2CaPools – Variant of membraneProperties with 2 independent Ca pools

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Morphology

	
class neuroml.nml.nml.Morphology(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, segments: list of Segment(s) (required) = None, segment_groups: list of SegmentGroup(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

Morphology – The collection of segment s which specify the 3D structure of the cell, along with a number of segmentGroup s

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
property num_segments

	Get the number of segments included in this cell morphology.

	Returns

	number of segments

	Return type

	int

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

NamedDimensionalType

	
class neuroml.nml.nml.NamedDimensionalType(name: a string (required) = None, dimension: a string (required) = None, description: a string (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

NamedDimensionalVariable

	
class neuroml.nml.nml.NamedDimensionalVariable(name: a string (required) = None, dimension: a string (required) = None, description: a string (optional) = None, exposure: a string (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Network

	
class neuroml.nml.nml.Network(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, type: a networkTypes (optional) = None, temperature: a Nml2Quantity_temperature (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, spaces: list of Space(s) (optional) = None, regions: list of Region(s) (optional) = None, extracellular_properties: list of ExtracellularPropertiesLocal(s) (optional) = None, populations: list of Population(s) (required) = None, cell_sets: list of CellSet(s) (optional) = None, synaptic_connections: list of SynapticConnection(s) (optional) = None, projections: list of Projection(s) (optional) = None, electrical_projections: list of ElectricalProjection(s) (optional) = None, continuous_projections: list of ContinuousProjection(s) (optional) = None, explicit_inputs: list of ExplicitInput(s) (optional) = None, input_lists: list of InputList(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

Network – Network containing: population s (potentially of type populationList , and so specifying a list of cell location s); projection s (with lists of connection s) and/or explicitConnection s; and inputList s (with lists of input s) and/or explicitInput s. Note: often in NeuroML this will be of type networkWithTemperature if there are temperature dependent elements (e. g. ion channels).

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
exportHdf5(h5file, h5Group)

	Export to HDF5 file.

	
get_by_id(id)

	Get a component by its ID

	Parameters

	id (str) – ID of component to find

	Returns

	component with specified ID or None if no component with specified ID found

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

NeuroMLDocument

	
class neuroml.nml.nml.NeuroMLDocument(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, includes: list of IncludeType(s) (optional) = None, extracellular_properties: list of ExtracellularProperties(s) (optional) = None, intracellular_properties: list of IntracellularProperties(s) (optional) = None, morphology: list of Morphology(s) (optional) = None, ion_channel: list of IonChannel(s) (optional) = None, ion_channel_hhs: list of IonChannelHH(s) (optional) = None, ion_channel_v_shifts: list of IonChannelVShift(s) (optional) = None, ion_channel_kses: list of IonChannelKS(s) (optional) = None, decaying_pool_concentration_models: list of DecayingPoolConcentrationModel(s) (optional) = None, fixed_factor_concentration_models: list of FixedFactorConcentrationModel(s) (optional) = None, alpha_current_synapses: list of AlphaCurrentSynapse(s) (optional) = None, alpha_synapses: list of AlphaSynapse(s) (optional) = None, exp_one_synapses: list of ExpOneSynapse(s) (optional) = None, exp_two_synapses: list of ExpTwoSynapse(s) (optional) = None, exp_three_synapses: list of ExpThreeSynapse(s) (optional) = None, blocking_plastic_synapses: list of BlockingPlasticSynapse(s) (optional) = None, double_synapses: list of DoubleSynapse(s) (optional) = None, gap_junctions: list of GapJunction(s) (optional) = None, silent_synapses: list of SilentSynapse(s) (optional) = None, linear_graded_synapses: list of LinearGradedSynapse(s) (optional) = None, graded_synapses: list of GradedSynapse(s) (optional) = None, biophysical_properties: list of BiophysicalProperties(s) (optional) = None, cells: list of Cell(s) (optional) = None, cell2_ca_poolses: list of Cell2CaPools(s) (optional) = None, base_cells: list of BaseCell(s) (optional) = None, iaf_tau_cells: list of IafTauCell(s) (optional) = None, iaf_tau_ref_cells: list of IafTauRefCell(s) (optional) = None, iaf_cells: list of IafCell(s) (optional) = None, iaf_ref_cells: list of IafRefCell(s) (optional) = None, izhikevich_cells: list of IzhikevichCell(s) (optional) = None, izhikevich2007_cells: list of Izhikevich2007Cell(s) (optional) = None, ad_ex_ia_f_cells: list of AdExIaFCell(s) (optional) = None, fitz_hugh_nagumo_cells: list of FitzHughNagumoCell(s) (optional) = None, fitz_hugh_nagumo1969_cells: list of FitzHughNagumo1969Cell(s) (optional) = None, pinsky_rinzel_ca3_cells: list of PinskyRinzelCA3Cell(s) (optional) = None, pulse_generators: list of PulseGenerator(s) (optional) = None, pulse_generator_dls: list of PulseGeneratorDL(s) (optional) = None, sine_generators: list of SineGenerator(s) (optional) = None, sine_generator_dls: list of SineGeneratorDL(s) (optional) = None, ramp_generators: list of RampGenerator(s) (optional) = None, ramp_generator_dls: list of RampGeneratorDL(s) (optional) = None, compound_inputs: list of CompoundInput(s) (optional) = None, compound_input_dls: list of CompoundInputDL(s) (optional) = None, voltage_clamps: list of VoltageClamp(s) (optional) = None, voltage_clamp_triples: list of VoltageClampTriple(s) (optional) = None, spike_arrays: list of SpikeArray(s) (optional) = None, timed_synaptic_inputs: list of TimedSynapticInput(s) (optional) = None, spike_generators: list of SpikeGenerator(s) (optional) = None, spike_generator_randoms: list of SpikeGeneratorRandom(s) (optional) = None, spike_generator_poissons: list of SpikeGeneratorPoisson(s) (optional) = None, spike_generator_ref_poissons: list of SpikeGeneratorRefPoisson(s) (optional) = None, poisson_firing_synapses: list of PoissonFiringSynapse(s) (optional) = None, transient_poisson_firing_synapses: list of TransientPoissonFiringSynapse(s) (optional) = None, IF_curr_alpha: list of IF_curr_alpha(s) (optional) = None, IF_curr_exp: list of IF_curr_exp(s) (optional) = None, IF_cond_alpha: list of IF_cond_alpha(s) (optional) = None, IF_cond_exp: list of IF_cond_exp(s) (optional) = None, EIF_cond_exp_isfa_ista: list of EIF_cond_exp_isfa_ista(s) (optional) = None, EIF_cond_alpha_isfa_ista: list of EIF_cond_alpha_isfa_ista(s) (optional) = None, HH_cond_exp: list of HH_cond_exp(s) (optional) = None, exp_cond_synapses: list of ExpCondSynapse(s) (optional) = None, alpha_cond_synapses: list of AlphaCondSynapse(s) (optional) = None, exp_curr_synapses: list of ExpCurrSynapse(s) (optional) = None, alpha_curr_synapses: list of AlphaCurrSynapse(s) (optional) = None, SpikeSourcePoisson: list of SpikeSourcePoisson(s) (optional) = None, networks: list of Network(s) (optional) = None, ComponentType: list of ComponentType(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
append(element)

	Append an element

	Parameters

	element (Object) – element to append

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
get_by_id(id)

	Get a component by specifying its ID.

	Parameters

	id (str) – id of Component to get

	Returns

	Component with given ID or None if no Component with provided ID was found

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
summary(show_includes=True, show_non_network=True)

	Get a pretty-printed summary of the complete NeuroMLDocument.

This includes information on the various Components included in the
NeuroMLDocument: networks, cells, projections, synapses, and so on.

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

OpenState

	
class neuroml.nml.nml.OpenState(id: a NmlId (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

OpenState – A KSState with relativeConductance of 1

	Parameters

	relativeConductance (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Parameter

	
class neuroml.nml.nml.Parameter(name: a string (required) = None, dimension: a string (required) = None, description: a string (optional) = None, gds_collector_=None, **kwargs_)

	Bases: NamedDimensionalType

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Path

	
class neuroml.nml.nml.Path(from_: a SegmentEndPoint (optional) = None, to: a SegmentEndPoint (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

Path – Include all the segment s between those specified by from and to , inclusive

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

PinskyRinzelCA3Cell

	
class neuroml.nml.nml.PinskyRinzelCA3Cell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, i_soma: a Nml2Quantity_currentDensity (required) = None, i_dend: a Nml2Quantity_currentDensity (required) = None, gc: a Nml2Quantity_conductanceDensity (required) = None, g_ls: a Nml2Quantity_conductanceDensity (required) = None, g_ld: a Nml2Quantity_conductanceDensity (required) = None, g_na: a Nml2Quantity_conductanceDensity (required) = None, g_kdr: a Nml2Quantity_conductanceDensity (required) = None, g_ca: a Nml2Quantity_conductanceDensity (required) = None, g_kahp: a Nml2Quantity_conductanceDensity (required) = None, g_kc: a Nml2Quantity_conductanceDensity (required) = None, g_nmda: a Nml2Quantity_conductanceDensity (required) = None, g_ampa: a Nml2Quantity_conductanceDensity (required) = None, e_na: a Nml2Quantity_voltage (required) = None, e_ca: a Nml2Quantity_voltage (required) = None, e_k: a Nml2Quantity_voltage (required) = None, e_l: a Nml2Quantity_voltage (required) = None, qd0: a Nml2Quantity_none (required) = None, pp: a Nml2Quantity_none (required) = None, alphac: a Nml2Quantity_none (required) = None, betac: a Nml2Quantity_none (required) = None, cm: a Nml2Quantity_specificCapacitance (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseCell

PinskyRinzelCA3Cell – Reduced CA3 cell model from Pinsky and Rinzel 1994. See https://github.com/OpenSourceBrain/PinskyRinzelModel

	Parameters

	
	iSoma (currentDensity) –

	iDend (currentDensity) –

	gLs (conductanceDensity) –

	gLd (conductanceDensity) –

	gNa (conductanceDensity) –

	gKdr (conductanceDensity) –

	gCa (conductanceDensity) –

	gKahp (conductanceDensity) –

	gKC (conductanceDensity) –

	gc (conductanceDensity) –

	eNa (voltage) –

	eCa (voltage) –

	eK (voltage) –

	eL (voltage) –

	pp (none) –

	cm (specificCapacitance) –

	alphac (none) –

	betac (none) –

	gNmda (conductanceDensity) –

	gAmpa (conductanceDensity) –

	qd0 (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

PlasticityMechanism

	
class neuroml.nml.nml.PlasticityMechanism(type: a PlasticityTypes (required) = None, init_release_prob: a ZeroToOne (required) = None, tau_rec: a Nml2Quantity_time (required) = None, tau_fac: a Nml2Quantity_time (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Point3DWithDiam

	
class neuroml.nml.nml.Point3DWithDiam(x: a double (required) = None, y: a double (required) = None, z: a double (required) = None, diameter: a DoubleGreaterThanZero (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

Point3DWithDiam – Base type for ComponentTypes which specify an (x, y, z) coordinate along with a diameter. Note: no dimension used in the attributes for these coordinates! These are assumed to have dimension micrometer (10^-6 m). This is due to micrometers being the default option for the majority of neuronal morphology formats, and dimensions are omitted here to facilitate reading and writing of morphologies in NeuroML.

	Parameters

	
	x (none) – x coordinate of the point. Note: no dimension used, see description of point3DWithDiam for details.

	y (none) – y coordinate of the ppoint. Note: no dimension used, see description of point3DWithDiam for details.

	z (none) – z coordinate of the ppoint. Note: no dimension used, see description of point3DWithDiam for details.

	diameter (none) – Diameter of the ppoint. Note: no dimension used, see description of point3DWithDiam for details.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
distance_to(other_3d_point)

	Find the distance between this point and another.

	Parameters

	other_3d_point (Point3DWithDiam) – other 3D point to calculate distance to

	Returns

	distance between the two points

	Return type

	float

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

PoissonFiringSynapse

	
class neuroml.nml.nml.PoissonFiringSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, average_rate: a Nml2Quantity_pertime (required) = None, synapse: a string (required) = None, spike_target: a string (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

PoissonFiringSynapse – Poisson spike generator firing at averageRate, which is connected to single synapse that is triggered every time a spike is generated, producing an input current. See also transientPoissonFiringSynapse .

	Parameters

	averageRate (per_time) – The average rate at which spikes are emitted

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Population

	
class neuroml.nml.nml.Population(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, component: a NmlId (required) = None, size: a NonNegativeInteger (optional) = None, type: a populationTypes (optional) = None, extracellular_properties: a NmlId (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, layout: a Layout (optional) = None, instances: list of Instance(s) (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

Population – A population of components, with just one parameter for the size, i. e. number of components to create. Note: quite often this is used with type= populationList which means the size is determined by the number of instance s (with location s) in the list. The size attribute is still set, and there will be a validation error if this does not match the number in the list.

	Parameters

	size (none) – Number of instances of this Component to create when the population is instantiated

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
exportHdf5(h5file, h5Group)

	Export to HDF5 file.

	
get_size()

	

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Projection

	
class neuroml.nml.nml.Projection(id: a NmlId (required) = None, presynaptic_population: a NmlId (required) = None, postsynaptic_population: a NmlId (required) = None, synapse: a NmlId (required) = None, connections: list of Connection(s) (optional) = None, connection_wds: list of ConnectionWD(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseProjection

Projection – Projection from one population, presynapticPopulation to another, postsynapticPopulation, through synapse. Contains lists of connection or connectionWD elements.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
exportHdf5(h5file, h5Group)

	Export to HDF5 file.

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Property

	
class neuroml.nml.nml.Property(tag: a string (required) = None, value: a string (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

Property – A property (a tag and value pair), which can be on any baseStandalone either as a direct child, or within an Annotation . Generally something which helps the visual display or facilitates simulation of a Component, but is not a core physiological property. Common examples include: numberInternalDivisions, equivalent of nseg in NEURON; radius, for a radius to use in graphical displays for abstract cells (i. e. without defined morphologies); color, the color to use for a Population or populationList of cells; recommended_dt_ms, the recommended timestep to use for simulating a Network , recommended_duration_ms the recommended duration to use when running a Network

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ProximalDetails

	
class neuroml.nml.nml.ProximalDetails(translation_start: a double (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

PulseGenerator

	
class neuroml.nml.nml.PulseGenerator(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, delay: a Nml2Quantity_time (required) = None, duration: a Nml2Quantity_time (required) = None, amplitude: a Nml2Quantity_current (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

PulseGenerator – Generates a constant current pulse of a certain amplitude for a specified duration after a delay. Scaled by weight, if set

	Parameters

	
	delay (time) – Delay before change in current. Current is zero prior to this.

	duration (time) – Duration for holding current at amplitude. Current is zero after delay + duration.

	amplitude (current) – Amplitude of current pulse

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

PulseGeneratorDL

	
class neuroml.nml.nml.PulseGeneratorDL(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, delay: a Nml2Quantity_time (required) = None, duration: a Nml2Quantity_time (required) = None, amplitude: a Nml2Quantity_current (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

PulseGeneratorDL – Dimensionless equivalent of pulseGenerator . Generates a constant current pulse of a certain amplitude for a specified duration after a delay. Scaled by weight, if set

	Parameters

	
	delay (time) – Delay before change in current. Current is zero prior to this.

	duration (time) – Duration for holding current at amplitude. Current is zero after delay + duration.

	amplitude (none) – Amplitude of current pulse

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Q10ConductanceScaling

	
class neuroml.nml.nml.Q10ConductanceScaling(q10_factor: a Nml2Quantity_none (required) = None, experimental_temp: a Nml2Quantity_temperature (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

Q10ConductanceScaling – A value for the conductance scaling which varies as a standard function of the difference between the current temperature, temperature, and the temperature at which the conductance was originally determined, experimentalTemp

	Parameters

	
	q10Factor (none) –

	experimentalTemp (temperature) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Q10Settings

	
class neuroml.nml.nml.Q10Settings(type: a NmlId (required) = None, fixed_q10: a Nml2Quantity_none (optional) = None, q10_factor: a Nml2Quantity_none (optional) = None, experimental_temp: a Nml2Quantity_temperature (optional) = None, gds_collector_=None, **kwargs_)

	Bases: GeneratedsSuper

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

RampGenerator

	
class neuroml.nml.nml.RampGenerator(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, delay: a Nml2Quantity_time (required) = None, duration: a Nml2Quantity_time (required) = None, start_amplitude: a Nml2Quantity_current (required) = None, finish_amplitude: a Nml2Quantity_current (required) = None, baseline_amplitude: a Nml2Quantity_current (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

RampGenerator – Generates a ramping current after a time delay, for a fixed duration. During this time the current steadily changes from startAmplitude to finishAmplitude. Scaled by weight, if set

	Parameters

	
	delay (time) – Delay before change in current. Current is baselineAmplitude prior to this.

	duration (time) – Duration for holding current at amplitude. Current is baselineAmplitude after delay + duration.

	startAmplitude (current) – Amplitude of linearly varying current at time delay

	finishAmplitude (current) – Amplitude of linearly varying current at time delay + duration

	baselineAmplitude (current) – Amplitude of current before time delay, and after time delay + duration

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

RampGeneratorDL

	
class neuroml.nml.nml.RampGeneratorDL(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, delay: a Nml2Quantity_time (required) = None, duration: a Nml2Quantity_time (required) = None, start_amplitude: a Nml2Quantity_current (required) = None, finish_amplitude: a Nml2Quantity_current (required) = None, baseline_amplitude: a Nml2Quantity_current (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

RampGeneratorDL – Dimensionless equivalent of rampGenerator . Generates a ramping current after a time delay, for a fixed duration. During this time the dimensionless current steadily changes from startAmplitude to finishAmplitude. Scaled by weight, if set

	Parameters

	
	delay (time) – Delay before change in current. Current is baselineAmplitude prior to this.

	duration (time) – Duration for holding current at amplitude. Current is baselineAmplitude after delay + duration.

	startAmplitude (none) – Amplitude of linearly varying current at time delay

	finishAmplitude (none) – Amplitude of linearly varying current at time delay + duration

	baselineAmplitude (none) – Amplitude of current before time delay, and after time delay + duration

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

RandomLayout

	
class neuroml.nml.nml.RandomLayout(number: a nonNegativeInteger (optional) = None, regions: a NmlId (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

ReactionScheme

	
class neuroml.nml.nml.ReactionScheme(id: a NmlId (required) = None, source: a string (required) = None, type: a string (required) = None, anytypeobjs_=None, gds_collector_=None, **kwargs_)

	Bases: Base

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Region

	
class neuroml.nml.nml.Region(id: a NmlId (required) = None, spaces: a NmlId (optional) = None, anytypeobjs_=None, gds_collector_=None, **kwargs_)

	Bases: Base

Region – Initial attempt to specify 3D region for placing cells. Work in progress…

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Requirement

	
class neuroml.nml.nml.Requirement(name: a string (required) = None, dimension: a string (required) = None, description: a string (optional) = None, gds_collector_=None, **kwargs_)

	Bases: NamedDimensionalType

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Resistivity

	
class neuroml.nml.nml.Resistivity(value: a Nml2Quantity_resistivity (required) = None, segment_groups: a NmlId (optional) = 'all', gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

Resistivity – The resistivity, or specific axial resistance, of the cytoplasm

	Parameters

	value (resistivity) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

	
validate_Nml2Quantity_resistivity(value)

	

	
validate_Nml2Quantity_resistivity_patterns_ = [['^(-?([0-9]*(\\.[0-9]+)?)([eE]-?[0-9]+)?[\\s]*(ohm_cm|kohm_cm|ohm_m))$']]

	

ReverseTransition

	
class neuroml.nml.nml.ReverseTransition(id: a NmlId (required) = None, from_: a NmlId (required) = None, to: a NmlId (required) = None, anytypeobjs_=None, gds_collector_=None, **kwargs_)

	Bases: Base

ReverseTransition – A reverse only KSTransition for a gateKS which specifies a rate (type baseHHRate) which follows one of the standard Hodgkin Huxley forms (e. g. HHExpRate , HHSigmoidRate , HHExpLinearRate

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Segment

	
class neuroml.nml.nml.Segment(id: a NonNegativeInteger (required) = None, name: a string (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, parent: a SegmentParent (optional) = None, proximal: a Point3DWithDiam (optional) = None, distal: a Point3DWithDiam (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseNonNegativeIntegerId

Segment – A segment defines the smallest unit within a possibly branching structure (morphology), such as a dendrite or axon. Its id should be a nonnegative integer (usually soma/root = 0). Its end points are given by the proximal and distal points. The proximal point can be omitted, usually because it is the same as a point on the parent segment, see proximal for details. parent specifies the parent segment. The first segment of a cell (with no parent) usually represents the soma. The shape is normally a cylinder (radii of the proximal and distal equal, but positions different) or a conical frustum (radii and positions different). If the x, y, x positions of the proximal and distal are equal, the segment can be interpreted as a sphere, and in this case the radii of these points must be equal. NOTE: LEMS does not yet support multicompartmental modelling, so the Dynamics here is only appropriate for single compartment modelling.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
property length

	Get the length of the segment.

	Returns

	length of the segment

	Return type

	float

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
property surface_area

	Get the surface area of the segment.

	Returns

	surface area of segment

	Return type

	float

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

	
property volume

	Get the volume of the segment.

	Returns

	volume of segment

	Return type

	float

SegmentEndPoint

	
class neuroml.nml.nml.SegmentEndPoint(segments: a NonNegativeInteger (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SegmentGroup

	
class neuroml.nml.nml.SegmentGroup(id: a NonNegativeInteger (required) = None, neuro_lex_id: a NeuroLexId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, members: list of Member(s) (optional) = None, includes: list of Include(s) (optional) = None, paths: list of Path(s) (optional) = None, sub_trees: list of SubTree(s) (optional) = None, inhomogeneous_parameters: list of InhomogeneousParameter(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Base

SegmentGroup – A method to describe a group of segment s in a morphology , e. g. soma_group, dendrite_group, axon_group. While a name is useful to describe the group, the neuroLexId attribute can be used to explicitly specify the meaning of the group, e. g. sao1044911821 for ‘Neuronal Cell Body’, sao1211023249 for ‘Dendrite’. The segment s in this group can be specified as: a list of individual member segments; a path , all of the segments along which should be included; a subTree of the cell to include; other segmentGroups to include (so all segments from those get included here). An inhomogeneousParameter can be defined on the region of the cell specified by this group (see variableParameter for usage).

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SegmentParent

	
class neuroml.nml.nml.SegmentParent(segments: a NonNegativeInteger (required) = None, fraction_along: a ZeroToOne (optional) = '1', gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SilentSynapse

	
class neuroml.nml.nml.SilentSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseSynapse

SilentSynapse – Dummy synapse which emits no current. Used as presynaptic endpoint for analog synaptic connection.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SineGenerator

	
class neuroml.nml.nml.SineGenerator(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, delay: a Nml2Quantity_time (required) = None, phase: a Nml2Quantity_none (required) = None, duration: a Nml2Quantity_time (required) = None, amplitude: a Nml2Quantity_current (required) = None, period: a Nml2Quantity_time (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

SineGenerator – Generates a sinusoidally varying current after a time delay, for a fixed duration. The period and maximum amplitude of the current can be set as well as the phase at which to start. Scaled by weight, if set

	Parameters

	
	phase (none) – Phase (between 0 and 2*pi) at which to start the varying current (i. e. at time given by delay)

	delay (time) – Delay before change in current. Current is zero prior to this.

	duration (time) – Duration for holding current at amplitude. Current is zero after delay + duration.

	amplitude (current) – Maximum amplitude of current

	period (time) – Time period of oscillation

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SineGeneratorDL

	
class neuroml.nml.nml.SineGeneratorDL(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, delay: a Nml2Quantity_time (required) = None, phase: a Nml2Quantity_none (required) = None, duration: a Nml2Quantity_time (required) = None, amplitude: a Nml2Quantity_current (required) = None, period: a Nml2Quantity_time (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

SineGeneratorDL – Dimensionless equivalent of sineGenerator . Generates a sinusoidally varying current after a time delay, for a fixed duration. The period and maximum amplitude of the current can be set as well as the phase at which to start. Scaled by weight, if set

	Parameters

	
	phase (none) – Phase (between 0 and 2*pi) at which to start the varying current (i. e. at time given by delay)

	delay (time) – Delay before change in current. Current is zero prior to this.

	duration (time) – Duration for holding current at amplitude. Current is zero after delay + duration.

	amplitude (none) – Maximum amplitude of current

	period (time) – Time period of oscillation

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Space

	
class neuroml.nml.nml.Space(id: a NmlId (required) = None, based_on: a allowedSpaces (optional) = None, structure: a SpaceStructure (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Base

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SpaceStructure

	
class neuroml.nml.nml.SpaceStructure(x_spacing: a float (optional) = None, y_spacing: a float (optional) = None, z_spacing: a float (optional) = None, x_start: a float (optional) = 0, y_start: a float (optional) = 0, z_start: a float (optional) = 0, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Species

	
class neuroml.nml.nml.Species(id: a NmlId (required) = None, concentration_model: a NmlId (required) = None, ion: a NmlId (optional) = None, initial_concentration: a Nml2Quantity_concentration (required) = None, initial_ext_concentration: a Nml2Quantity_concentration (required) = None, segment_groups: a NmlId (optional) = 'all', gds_collector_=None, **kwargs_)

	Bases: Base

Species – Description of a chemical species identified by ion, which has internal, concentration, and external, extConcentration values for its concentration

	Parameters

	
	initialConcentration (concentration) –

	initialExtConcentration (concentration) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SpecificCapacitance

	
class neuroml.nml.nml.SpecificCapacitance(value: a Nml2Quantity_specificCapacitance (required) = None, segment_groups: a NmlId (optional) = 'all', gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

SpecificCapacitance – Capacitance per unit area

	Parameters

	value (specificCapacitance) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Spike

	
class neuroml.nml.nml.Spike(id: a NonNegativeInteger (required) = None, time: a Nml2Quantity_time (required) = None, gds_collector_=None, **kwargs_)

	Bases: BaseNonNegativeIntegerId

Spike – Emits a single spike at the specified time

	Parameters

	time (time) – Time at which to emit one spike event

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SpikeArray

	
class neuroml.nml.nml.SpikeArray(id: a NonNegativeInteger (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, spikes: list of Spike(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

SpikeArray – Set of spike ComponentTypes, each emitting one spike at a certain time. Can be used to feed a predetermined spike train into a cell

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SpikeGenerator

	
class neuroml.nml.nml.SpikeGenerator(id: a NonNegativeInteger (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, period: a Nml2Quantity_time (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

SpikeGenerator – Simple generator of spikes at a regular interval set by period

	Parameters

	period (time) – Time between spikes. The first spike will be emitted after this time.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SpikeGeneratorPoisson

	
class neuroml.nml.nml.SpikeGeneratorPoisson(id: a NonNegativeInteger (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, average_rate: a Nml2Quantity_pertime (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: Standalone

SpikeGeneratorPoisson – Generator of spikes whose ISI is distributed according to an exponential PDF with scale: 1 / averageRate

	Parameters

	averageRate (per_time) – The average rate at which spikes are emitted

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SpikeGeneratorRandom

	
class neuroml.nml.nml.SpikeGeneratorRandom(id: a NonNegativeInteger (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, max_isi: a Nml2Quantity_time (required) = None, min_isi: a Nml2Quantity_time (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

SpikeGeneratorRandom – Generator of spikes with a random interspike interval of at least minISI and at most maxISI

	Parameters

	
	maxISI (time) – Maximum interspike interval

	minISI (time) – Minimum interspike interval

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SpikeGeneratorRefPoisson

	
class neuroml.nml.nml.SpikeGeneratorRefPoisson(id: a NonNegativeInteger (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, average_rate: a Nml2Quantity_pertime (required) = None, minimum_isi: a Nml2Quantity_time (required) = None, gds_collector_=None, **kwargs_)

	Bases: SpikeGeneratorPoisson

SpikeGeneratorRefPoisson – Generator of spikes whose ISI distribution is the maximum entropy distribution over [minimumISI, +infinity) with mean: 1 / averageRate

	Parameters

	
	minimumISI (time) – The minimum interspike interval

	averageRate (per_time) – The average rate at which spikes are emitted

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SpikeSourcePoisson

	
class neuroml.nml.nml.SpikeSourcePoisson(id: a NonNegativeInteger (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, start: a Nml2Quantity_time (required) = None, duration: a Nml2Quantity_time (required) = None, rate: a Nml2Quantity_pertime (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

SpikeSourcePoisson – Spike source, generating spikes according to a Poisson process.

	Parameters

	
	start (time) –

	duration (time) –

	rate (per_time) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SpikeThresh

	
class neuroml.nml.nml.SpikeThresh(value: a Nml2Quantity_voltage (required) = None, segment_groups: a NmlId (optional) = 'all', gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

SpikeThresh – Membrane potential at which to emit a spiking event. Note, usually the spiking event will not be emitted again until the membrane potential has fallen below this value and rises again to cross it in a positive direction

	Parameters

	value (voltage) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

Standalone

	
class neuroml.nml.nml.Standalone(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: Base

Standalone – Elements which can stand alone and be referenced by id, e.g. cell, morphology.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

StateVariable

	
class neuroml.nml.nml.StateVariable(name: a string (required) = None, dimension: a string (required) = None, description: a string (optional) = None, exposure: a string (optional) = None, gds_collector_=None, **kwargs_)

	Bases: NamedDimensionalVariable

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SubTree

	
class neuroml.nml.nml.SubTree(from_: a SegmentEndPoint (optional) = None, to: a SegmentEndPoint (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

SubTree – Include all the segment s distal to that specified by from in the segmentGroup

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

SynapticConnection

	
class neuroml.nml.nml.SynapticConnection(neuro_lex_id: a NeuroLexId (optional) = None, from_: a string (required) = None, to: a string (required) = None, synapse: a string (required) = None, destination: a NmlId (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

SynapticConnection – Explicit event connection between named components, which gets processed via a new instance of a synapse component which is created on the target component

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

TauInfTransition

	
class neuroml.nml.nml.TauInfTransition(id: a NmlId (required) = None, from_: a NmlId (required) = None, to: a NmlId (required) = None, steady_state: a HHVariable (required) = None, time_course: a HHTime (required) = None, gds_collector_=None, **kwargs_)

	Bases: Base

TauInfTransition – KS Transition specified in terms of time constant tau and steady state inf

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

TimeDerivative

	
class neuroml.nml.nml.TimeDerivative(variable: a string (required) = None, value: a string (required) = None, gds_collector_=None, **kwargs_)

	Bases: GeneratedsSuper

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

TimedSynapticInput

	
class neuroml.nml.nml.TimedSynapticInput(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, synapse: a NmlId (required) = None, spike_target: a string (required) = None, spikes: list of Spike(s) (optional) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

TimedSynapticInput – Spike array connected to a single synapse, producing a current triggered by each spike in the array.

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

TransientPoissonFiringSynapse

	
class neuroml.nml.nml.TransientPoissonFiringSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, average_rate: a Nml2Quantity_pertime (required) = None, delay: a Nml2Quantity_time (required) = None, duration: a Nml2Quantity_time (required) = None, synapse: a string (required) = None, spike_target: a string (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

TransientPoissonFiringSynapse – Poisson spike generator firing at averageRate after a delay and for a duration, connected to single synapse that is triggered every time a spike is generated, providing an input current. Similar to ComponentType poissonFiringSynapse .

	Parameters

	
	averageRate (per_time) –

	delay (time) –

	duration (time) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

UnstructuredLayout

	
class neuroml.nml.nml.UnstructuredLayout(number: a nonNegativeInteger (optional) = None, gds_collector_=None, **kwargs_)

	Bases: BaseWithoutId

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

VariableParameter

	
class neuroml.nml.nml.VariableParameter(parameter: a string (required) = None, segment_groups: a string (required) = None, inhomogeneous_value: a InhomogeneousValue (optional) = None, gds_collector_=None, **kwargs_)

	Bases: GeneratedsSuper

VariableParameter – Specifies a parameter (e. g. condDensity) which can vary its value across a segmentGroup. The value is calculated from value attribute of the inhomogeneousValue subelement. This element is normally a child of channelDensityNonUniform , channelDensityNonUniformNernst or channelDensityNonUniformGHK and is used to calculate the value of the conductance, etc. which will vary on different parts of the cell. The segmentGroup specified here needs to define an inhomogeneousParameter (referenced from inhomogeneousParameter in the inhomogeneousValue), which calculates a variable (e. g. p) varying across the cell (e. g. based on the path length from soma), which is then used in the value attribute of the inhomogeneousValue (so for example condDensity = f(p))

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

VoltageClamp

	
class neuroml.nml.nml.VoltageClamp(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, delay: a Nml2Quantity_time (required) = None, duration: a Nml2Quantity_time (required) = None, target_voltage: a Nml2Quantity_voltage (required) = None, simple_series_resistance: a Nml2Quantity_resistance (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

VoltageClamp – Voltage clamp. Applies a variable current i to try to keep parent at targetVoltage. Not yet fully tested!!! Consider using voltageClampTriple!!

	Parameters

	
	delay (time) – Delay before change in current. Current is zero prior to this.

	duration (time) – Duration for attempting to keep parent at targetVoltage. Current is zero after delay + duration.

	targetVoltage (voltage) – Current will be applied to try to get parent to this target voltage

	simpleSeriesResistance (resistance) – Current will be calculated by the difference in voltage between the target and parent, divided by this value

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

VoltageClampTriple

	
class neuroml.nml.nml.VoltageClampTriple(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, active: a ZeroOrOne (required) = None, delay: a Nml2Quantity_time (required) = None, duration: a Nml2Quantity_time (required) = None, conditioning_voltage: a Nml2Quantity_voltage (required) = None, testing_voltage: a Nml2Quantity_voltage (required) = None, return_voltage: a Nml2Quantity_voltage (required) = None, simple_series_resistance: a Nml2Quantity_resistance (required) = None, gds_collector_=None, **kwargs_)

	Bases: Standalone

VoltageClampTriple – Voltage clamp with 3 clamp levels. Applies a variable current i (through simpleSeriesResistance) to try to keep parent cell at conditioningVoltage until time delay, testingVoltage until delay + duration, and returnVoltage afterwards. Only enabled if active = 1.

	Parameters

	
	active (none) – Whether the voltage clamp is active (1) or inactive (0).

	delay (time) – Delay before switching from conditioningVoltage to testingVoltage.

	duration (time) – Duration to hold at testingVoltage.

	conditioningVoltage (voltage) – Target voltage before time delay

	testingVoltage (voltage) – Target voltage between times delay and delay + duration

	returnVoltage (voltage) – Target voltage after time duration

	simpleSeriesResistance (resistance) – Current will be calculated by the difference in voltage between the target and parent, divided by this value

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

basePyNNCell

	
class neuroml.nml.nml.basePyNNCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required) = None, i_offset: a float (required) = None, tau_syn_E: a float (required) = None, tau_syn_I: a float (required) = None, v_init: a float (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: BaseCell

basePyNNCell – Base type of any PyNN standard cell model. Note: membrane potential v has dimensions voltage, but all other parameters are dimensionless. This is to facilitate translation to and from PyNN scripts in Python, where these parameters have implicit units, see http://neuralensemble.org/trac/PyNN/wiki/StandardModels

	Parameters

	
	cm (none) –

	i_offset (none) –

	tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	v_init (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

basePyNNIaFCell

	
class neuroml.nml.nml.basePyNNIaFCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required) = None, i_offset: a float (required) = None, tau_syn_E: a float (required) = None, tau_syn_I: a float (required) = None, v_init: a float (required) = None, tau_m: a float (required) = None, tau_refrac: a float (required) = None, v_reset: a float (required) = None, v_rest: a float (required) = None, v_thresh: a float (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: basePyNNCell

basePyNNIaFCell – Base type of any PyNN standard integrate and fire model

	Parameters

	
	tau_refrac (none) –

	v_thresh (none) –

	tau_m (none) –

	v_rest (none) –

	v_reset (none) –

	cm (none) –

	i_offset (none) –

	tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	v_init (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

basePyNNIaFCondCell

	
class neuroml.nml.nml.basePyNNIaFCondCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a string (optional) = None, properties: list of Property(s) (optional) = None, annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required) = None, i_offset: a float (required) = None, tau_syn_E: a float (required) = None, tau_syn_I: a float (required) = None, v_init: a float (required) = None, tau_m: a float (required) = None, tau_refrac: a float (required) = None, v_reset: a float (required) = None, v_rest: a float (required) = None, v_thresh: a float (required) = None, e_rev_E: a float (required) = None, e_rev_I: a float (required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

	Bases: basePyNNIaFCell

basePyNNIaFCondCell – Base type of conductance based PyNN IaF cell models

	Parameters

	
	e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_refrac (none) –

	v_thresh (none) –

	tau_m (none) –

	v_rest (none) –

	v_reset (none) –

	cm (none) –

	i_offset (none) –

	tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell! Any synapse producing a current can be placed on this cell

	v_init (none) –

	
add(obj=None, hint=None, force=False, validate=True, **kwargs)

	Generic function to allow easy addition of a new member to a NeuroML object.
Without arguments, when obj=None, it simply calls the info() method
to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the
current contents of this component object.

When obj is given a string name of a NeuroML class
(“NeuroMLDocument”), or the class itself (neuroml.NeuroMLDocument), a
new object will be created of this type and added as a member to the
calling (parent) component type object.

	Parameters

	
	obj (Object) – member object or class type (neuroml.NeuroMLDocument) or
name of class type (“NeuroMLDocument”), or None

	hint (string) – member name to add to when there are multiple members that obj can be added to

	force (bool) – boolean to force addition when an obj has already been added previously

	validate (bool) – validate component after adding (default: True)

	Returns obj

	the provided or created object

	Raises

	
	Exception – if a member compatible to obj could not be found

	Exception – if multiple members can accept the object and no hint is provided.

	
classmethod component_factory(component_type, validate=True, **kwargs)

	Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class
variable, along with its named constructor arguments, and this function
will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

	that all arguments given do belong to the ComponentType (useful for
caching typos)

	that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using
the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate
parameter can be set to False for this.

	Parameters

	
	component_type (str/type) – component type to create component from:
this can either be the name of the component as a string, e.g.
“NeuroMLDocument”, or it can be the class type itself: NeuroMLDocument.
Note that when providing the class type, one will need to import it,
e.g.: import NeuroMLDocument, to ensure that it is defined, whereas
this will not be required when using the string.

	validate (bool) – toggle validation (default: True)

	kwargs (named arguments) – named arguments to be passed to ComponentType constructor

	Returns

	new Component (object) of provided ComponentType

	Return type

	object

	Raises

	ValueError – if validation/checks fail

	
info(show_contents=False, return_format='string')

	Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular
NeuroML class (which will match the Schema definitions). It lists these
members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note
whether a member is optional or required.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents.
To see contents that have been set, use show_contents=True. This will
not show empty/unset contents. To see all contents, set
show_contents=all.

Note that not all members will have ids (since not all NeuroML2
ComponentTypes have ids). For members that do not have ids, the object
reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more
information on the MemberSpec_ class that generateDS uses.

	Parameters

	
	show_contents (bool or str) – toggle to print out the contents of the members

	return_format (str) – select what format to return information in
“string” (default), or “dict” or “list”.

If “dict” or “list” is provided, the information is returned as a
dict/list instead of being printed. Note that if show_contents is
False, only a list of members is available and will be returned
even if “dict” is supplied. If show_contents is True or “all”
but “list” is provided, only the list of members will be returned.
If something other than “string”, “list”, or “dict” is provided,
the string representation is returned and printed.

	Returns

	info string, or list of members or dict with members as keys
and member values as values

	Return type

	str, list/dict

	
parentinfo(return_format='string')

	Show the list of possible parents.

This object can then be added to objects of the parents using the add
method.

It is similar to the info() method. However, where in the info()
method, it is possible to find the contents of members for a component
(object) rather easily, it is not so easily possible to get all the
objects that may refer to another object.

So, this will provide information on possible parents. It will not
provide information on whether the components (objects) of the
particular parent have already been instantiated and what their values
are. The user should be able to gather this information easily by
reading the sources.

Please also note that various component types in NeuroML take ids of
components as parameters. For example, an ExplicitInput will take the
id of a cell as its target, and the id of a PulseGenerator as
input. However, these are string fields, and the cell/pulse generator
classes do not currently know that their ids can be used in
ExplicitInput. This information does not live in the XSD schema, and
so cannot be obtained here either.

	Parameters

	return_format (str) – format in which to return information. If
“string” (default), an information string is returned. If “list” or
“dict”, a list or dictionary is returned. The list will only
contain the parent names, whereas the dict will also include
the member of the parent that the component type matches to.

	Returns

	info string, or list of parents or dict with parents as keys
and member information as values

	Return type

	str, list/dict

	
validate(recursive=False)

	Validate the component.

Throws a Python ValueError if a the component is invalid. You can
ignore this by using a try .. except ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and
jnml do, will also check this.

Note: that this is different from the validate_ method, which does not
validate inherited members.

	Parameters

	recursive (bool) – toggle recursive validation (default: False)

	Returns

	None

	Return type

	None

	Raises

	ValueError – if component is invalid

loaders Module

	
class neuroml.loaders.ArrayMorphLoader

	Bases: object

	
classmethod load(filepath)

	Right now this load method isn’t done in a very nice way.
TODO: Complete refactoring.

	
class neuroml.loaders.NeuroMLHdf5Loader

	Bases: object

	
classmethod load(src, optimized=False)

	

	
class neuroml.loaders.NeuroMLLoader

	Bases: object

	
classmethod load(src)

	

	
class neuroml.loaders.SWCLoader

	Bases: object

WARNING: Class defunct

	
classmethod load_swc_single(src, name=None)

	

	
neuroml.loaders.print_(text, verbose=True)

	

	
neuroml.loaders.read_neuroml2_file(nml2_file_name: str, include_includes: bool = False, verbose: bool = False, already_included: ~typing.Optional[list] = None, print_method: ~typing.Callable = <function print_>, optimized: bool = False) → NeuroMLDocument

	Read a NeuroML2 file into a NeuroMLDocument object

	Parameters

	
	nml2_file_name (str) – name of NeuroML file to read

	include_includes (bool) – toggle whether Included files should also be loaded

	verbose (bool) – toggle verbose output

	already_included (list) – list of already included files

	print_method (Callable) – print function to use

	optimised (bool) – for optimised HDF5 NeuroML files

	Returns

	NeuroMLDoc object containing the read file

	
neuroml.loaders.read_neuroml2_string(nml2_string: str, include_includes: bool = False, verbose: bool = False, already_included: list = [], print_method: ~typing.Callable = <function print_>, optimized: bool = False, base_path: ~typing.Optional[str] = None) → NeuroMLDocument

	Read a NeuroML2 string into a NeuroMLDocument object

	Parameters

	
	nml2_string (str) – NeuroML string to load

	include_includes (bool) – toggle whether Included files should also be loaded

	verbose (bool) – toggle verbose output

	already_included (list) – list of already included files

	print_method (Callable) – print function to use

	optimised (bool) – for optimised HDF5 NeuroML files

	base_path (str) –

	Returns

	NeuroMLDoc object containing the model

writers Module

	
class neuroml.writers.ArrayMorphWriter

	Bases: object

For now just testing a simple method which can write a morphology, not a NeuroMLDocument.

	
classmethod write(data, filepath)

	

	
class neuroml.writers.NeuroMLHdf5Writer

	Bases: object

	
classmethod write(nml_doc, h5_file_name, embed_xml=True, compress=True)

	

	
class neuroml.writers.NeuroMLWriter

	Bases: object

	
classmethod write(nmldoc, file, close=True)

	Writes from NeuroMLDocument to nml file
in future can implement from other types
via chain of responsibility pattern.

utils Module

Utilities for checking generated code

	
neuroml.utils.add_all_to_document(nml_doc_src: NeuroMLDocument, nml_doc_tgt: NeuroMLDocument, verbose: bool = False) → None

	Add all members of the source NeuroML document to the target NeuroML document.

	Parameters

	
	nml_doc_src (NeuroMLDocument) – source NeuroML document to copy from

	nml_doc_tgt (NeuroMLDocument) – target NeuroML document to copy to

	verbose (bool) – control verbosity of working

	Raises

	Exception – if a member could not be copied.

	
neuroml.utils.append_to_element(parent, child)

	Append a child element to a parent Component

	Parameters

	
	parent (Object) – parent NeuroML component to add element to

	child (Object) – child NeuroML component to be added to parent

	Raises

	Exception – when the child could not be added to the parent

	
neuroml.utils.component_factory(component_type: Union[str, type], validate: bool = True, **kwargs: Any) → Any

	Factory function to create a NeuroML Component object.

Wrapper around the component_factory method that is present in each NeuroML
component type class.

Please see GeneratedsSuperSuper.component_factory for more information.

	
neuroml.utils.ctinfo(component_type)

	Provide information on any neuroml Component Type class.

This creates a new object (component) of the component type and call its
info() method.

	Parameters

	component_type (str or type) – component type to print information for, either a
string (the name) or the class itself

	Returns

	informatin string

	Return type

	str

	
neuroml.utils.ctparentinfo(component_type)

	Provide information on the parentage of any NeuroML Component Type
class.

This creates a new object (component) of the component type and call its
parentinfo() method.

	Parameters

	component_type (str or type) – component type to print information for, either a
string (the name) or the class itself

	Returns

	information string

	Return type

	str

	
neuroml.utils.get_summary(nml_file_name: str) → str

	Get a summary of the given NeuroML file.

	Parameters

	nml_file_name (str) – name of NeuroML file to get summary of

	Returns

	summary of provided file

	Return type

	str

	
neuroml.utils.has_segment_fraction_info(connections: list) → bool

	Check if connections include fraction information

	Parameters

	connections (list) – list of connection objects

	Returns

	True if connections include fragment information, otherwise False

	Return type

	Boolean

	
neuroml.utils.is_valid_neuroml2(file_name: str) → None

	Check if a file is valid NeuroML2.

	Parameters

	file_name (str) – name of NeuroML file to check

	Returns

	True if file is valid, False if not.

	Return type

	Boolean

	
neuroml.utils.main()

	

	
neuroml.utils.print_summary(nml_file_name: str) → None

	Print a summary of the NeuroML model in the given file.

	Parameters

	nml_file_name (str) – name of NeuroML file to print summary of

	
neuroml.utils.validate_neuroml2(file_name: str) → None

	Validate a NeuroML document against the NeuroML schema specification.

	Parameters

	file_name (str) – name of NeuroML file to validate.

	Raises

	ValueError – if document is invalid

arraymorph Module

Examples

The examples in this section are intended to give in depth overviews of how to accomplish
specific tasks with libNeuroML.

These examples are located in the neuroml/examples directory and can
be tested to confirm they work by running the run_all.py script.

Examples

	Examples

	Creating a NeuroML morphology

	Loading and modifying a file

	Building a network

	Building a 3D network

	Ion channels

	PyNN models

	Synapses

	Working with arraymorphs

	Working with Izhikevich Cells

Creating a NeuroML morphology

"""
Example of connecting segments together to create a
multicompartmental model of a cell.
"""

import neuroml
import neuroml.writers as writers

p = neuroml.Point3DWithDiam(x=0, y=0, z=0, diameter=50)
d = neuroml.Point3DWithDiam(x=50, y=0, z=0, diameter=50)
soma = neuroml.Segment(proximal=p, distal=d)
soma.name = "Soma"
soma.id = 0

Make an axon with 100 compartments:

parent = neuroml.SegmentParent(segments=soma.id)
parent_segment = soma
axon_segments = []
seg_id = 1

for i in range(100):
 p = neuroml.Point3DWithDiam(
 x=parent_segment.distal.x,
 y=parent_segment.distal.y,
 z=parent_segment.distal.z,
 diameter=0.1,
)

 d = neuroml.Point3DWithDiam(
 x=parent_segment.distal.x + 10,
 y=parent_segment.distal.y,
 z=parent_segment.distal.z,
 diameter=0.1,
)

 axon_segment = neuroml.Segment(proximal=p, distal=d, parent=parent)

 axon_segment.id = seg_id

 axon_segment.name = "axon_segment_" + str(axon_segment.id)

 # now reset everything:
 parent = neuroml.SegmentParent(segments=axon_segment.id)
 parent_segment = axon_segment
 seg_id += 1

 axon_segments.append(axon_segment)

test_morphology = neuroml.Morphology()
test_morphology.segments.append(soma)
test_morphology.segments += axon_segments
test_morphology.id = "TestMorphology"

cell = neuroml.Cell()
cell.name = "TestCell"
cell.id = "TestCell"
cell.morphology = test_morphology

doc = neuroml.NeuroMLDocument(id="TestNeuroMLDocument")

doc.cells.append(cell)

nml_file = "tmp/testmorphwrite.nml"

writers.NeuroMLWriter.write(doc, nml_file)

print("Written morphology file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

Loading and modifying a file

"""
In this example an axon is built, a morphology is loaded, the axon is
then connected to the loadeed morphology.
"""

import neuroml
import neuroml.loaders as loaders
import neuroml.writers as writers

fn = "./test_files/Purk2M9s.nml"
doc = loaders.NeuroMLLoader.load(fn)
print("Loaded morphology file from: " + fn)

get the parent segment:
parent_segment = doc.cells[0].morphology.segments[0]

parent = neuroml.SegmentParent(segments=parent_segment.id)

make an axon:
seg_id = 5000 # need a way to get a unique id from a morphology
axon_segments = []
for i in range(10):
 p = neuroml.Point3DWithDiam(
 x=parent_segment.distal.x,
 y=parent_segment.distal.y,
 z=parent_segment.distal.z,
 diameter=0.1,
)

 d = neuroml.Point3DWithDiam(
 x=parent_segment.distal.x + 10,
 y=parent_segment.distal.y,
 z=parent_segment.distal.z,
 diameter=0.1,
)

 axon_segment = neuroml.Segment(proximal=p, distal=d, parent=parent)

 axon_segment.id = seg_id

 axon_segment.name = "axon_segment_" + str(axon_segment.id)

 # now reset everything:
 parent = neuroml.SegmentParent(segments=axon_segment.id)
 parent_segment = axon_segment
 seg_id += 1

 axon_segments.append(axon_segment)

doc.cells[0].morphology.segments += axon_segments

nml_file = "./tmp/modified_morphology.nml"

writers.NeuroMLWriter.write(doc, nml_file)

print("Saved modified morphology file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

Building a network

"""

Example to build a full spiking IaF network
through libNeuroML, save it as XML and validate it

"""

from neuroml import NeuroMLDocument
from neuroml import IafCell
from neuroml import Network
from neuroml import ExpOneSynapse
from neuroml import Population
from neuroml import PulseGenerator
from neuroml import ExplicitInput
from neuroml import SynapticConnection
import neuroml.writers as writers
from random import random

nml_doc = NeuroMLDocument(id="IafNet")

IafCell0 = IafCell(
 id="iaf0",
 C="1.0 nF",
 thresh="-50mV",
 reset="-65mV",
 leak_conductance="10 nS",
 leak_reversal="-65mV",
)

nml_doc.iaf_cells.append(IafCell0)

IafCell1 = IafCell(
 id="iaf1",
 C="1.0 nF",
 thresh="-50mV",
 reset="-65mV",
 leak_conductance="20 nS",
 leak_reversal="-65mV",
)

nml_doc.iaf_cells.append(IafCell1)

syn0 = ExpOneSynapse(id="syn0", gbase="65nS", erev="0mV", tau_decay="3ms")

nml_doc.exp_one_synapses.append(syn0)

net = Network(id="IafNet")

nml_doc.networks.append(net)

size0 = 5
pop0 = Population(id="IafPop0", component=IafCell0.id, size=size0)

net.populations.append(pop0)

size1 = 5
pop1 = Population(id="IafPop1", component=IafCell0.id, size=size1)

net.populations.append(pop1)

prob_connection = 0.5

for pre in range(0, size0):

 pg = PulseGenerator(
 id="pulseGen_%i" % pre,
 delay="0ms",
 duration="100ms",
 amplitude="%f nA" % (0.1 * random()),
)

 nml_doc.pulse_generators.append(pg)

 exp_input = ExplicitInput(target="%s[%i]" % (pop0.id, pre), input=pg.id)

 net.explicit_inputs.append(exp_input)

 for post in range(0, size1):
 # fromxx is used since from is Python keyword
 if random() <= prob_connection:
 syn = SynapticConnection(
 from_="%s[%i]" % (pop0.id, pre),
 synapse=syn0.id,
 to="%s[%i]" % (pop1.id, post),
)
 net.synaptic_connections.append(syn)

nml_file = "tmp/testnet.nml"
writers.NeuroMLWriter.write(nml_doc, nml_file)

print("Written network file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

Building a 3D network

"""

Example to build a full spiking IaF network throught libNeuroML & save it as XML & validate it

"""

from neuroml import NeuroMLDocument
from neuroml import Network
from neuroml import ExpOneSynapse
from neuroml import Population
from neuroml import Property
from neuroml import Cell
from neuroml import Location
from neuroml import Instance
from neuroml import Morphology
from neuroml import Point3DWithDiam
from neuroml import Segment
from neuroml import SegmentParent
from neuroml import Projection
from neuroml import Connection

import neuroml.writers as writers
from random import random

soma_diam = 10
soma_len = 10
dend_diam = 2
dend_len = 10
dend_num = 10

def generateRandomMorphology():

 morphology = Morphology()

 p = Point3DWithDiam(x=0, y=0, z=0, diameter=soma_diam)
 d = Point3DWithDiam(x=soma_len, y=0, z=0, diameter=soma_diam)
 soma = Segment(proximal=p, distal=d, name="Soma", id=0)

 morphology.segments.append(soma)
 parent_seg = soma

 for dend_id in range(0, dend_num):

 p = Point3DWithDiam(x=d.x, y=d.y, z=d.z, diameter=dend_diam)
 d = Point3DWithDiam(x=p.x, y=p.y + dend_len, z=p.z, diameter=dend_diam)
 dend = Segment(proximal=p, distal=d, name="Dend_%i" % dend_id, id=1 + dend_id)
 dend.parent = SegmentParent(segments=parent_seg.id)
 parent_seg = dend

 morphology.segments.append(dend)

 morphology.id = "TestMorphology"

 return morphology

def run():

 cell_num = 10
 x_size = 500
 y_size = 500
 z_size = 500

 nml_doc = NeuroMLDocument(id="Net3DExample")

 syn0 = ExpOneSynapse(id="syn0", gbase="65nS", erev="0mV", tau_decay="3ms")
 nml_doc.exp_one_synapses.append(syn0)

 net = Network(id="Net3D")
 nml_doc.networks.append(net)

 proj_count = 0
 # conn_count = 0

 for cell_id in range(0, cell_num):

 cell = Cell(id="Cell_%i" % cell_id)

 cell.morphology = generateRandomMorphology()

 nml_doc.cells.append(cell)

 pop = Population(
 id="Pop_%i" % cell_id, component=cell.id, type="populationList"
)
 net.populations.append(pop)
 pop.properties.append(Property(tag="color", value="1 0 0"))

 inst = Instance(id="0")
 pop.instances.append(inst)

 inst.location = Location(
 x=str(x_size * random()), y=str(y_size * random()), z=str(z_size * random())
)

 prob_connection = 0.5
 for post in range(0, cell_num):
 if post is not cell_id and random() <= prob_connection:

 from_pop = "Pop_%i" % cell_id
 to_pop = "Pop_%i" % post

 pre_seg_id = 0
 post_seg_id = 1

 projection = Projection(
 id="Proj_%i" % proj_count,
 presynaptic_population=from_pop,
 postsynaptic_population=to_pop,
 synapse=syn0.id,
)
 net.projections.append(projection)
 connection = Connection(
 id=proj_count,
 pre_cell_id="%s[%i]" % (from_pop, 0),
 pre_segment_id=pre_seg_id,
 pre_fraction_along=random(),
 post_cell_id="%s[%i]" % (to_pop, 0),
 post_segment_id=post_seg_id,
 post_fraction_along=random(),
)

 projection.connections.append(connection)
 proj_count += 1
 # net.synaptic_connections.append(SynapticConnection(from_="%s[%i]"%(from_pop,0), to="%s[%i]"%(to_pop,0)))

 ####### Write to file ######

 nml_file = "tmp/net3d.nml"
 writers.NeuroMLWriter.write(nml_doc, nml_file)

 print("Written network file to: " + nml_file)

 ###### Validate the NeuroML ######

 from neuroml.utils import validate_neuroml2

 validate_neuroml2(nml_file)

run()

Ion channels

"""
Generating a Hodgkin-Huxley Ion Channel and writing it to NeuroML
"""

import neuroml
import neuroml.writers as writers

chan = neuroml.IonChannelHH(
 id="na",
 conductance="10pS",
 species="na",
 notes="This is an example voltage-gated Na channel",
)

m_gate = neuroml.GateHHRates(id="m", instances="3")
h_gate = neuroml.GateHHRates(id="h", instances="1")

m_gate.forward_rate = neuroml.HHRate(
 type="HHExpRate", rate="0.07per_ms", midpoint="-65mV", scale="-20mV"
)

m_gate.reverse_rate = neuroml.HHRate(
 type="HHSigmoidRate", rate="1per_ms", midpoint="-35mV", scale="10mV"
)

h_gate.forward_rate = neuroml.HHRate(
 type="HHExpLinearRate", rate="0.1per_ms", midpoint="-55mV", scale="10mV"
)

h_gate.reverse_rate = neuroml.HHRate(
 type="HHExpRate", rate="0.125per_ms", midpoint="-65mV", scale="-80mV"
)

chan.gate_hh_rates.append(m_gate)
chan.gate_hh_rates.append(h_gate)

doc = neuroml.NeuroMLDocument()
doc.ion_channel_hhs.append(chan)

doc.id = "ChannelMLDemo"

nml_file = "./tmp/ionChannelTest.xml"
writers.NeuroMLWriter.write(doc, nml_file)

print("Written channel file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

PyNN models

"""

Example to build a PyNN based network

"""

from neuroml import NeuroMLDocument
from neuroml import *
import neuroml.writers as writers
from random import random

######################## Build the network ####################################

nml_doc = NeuroMLDocument(id="IafNet")

pynn0 = IF_curr_alpha(
 id="IF_curr_alpha_pop_IF_curr_alpha",
 cm="1.0",
 i_offset="0.9",
 tau_m="20.0",
 tau_refrac="10.0",
 tau_syn_E="0.5",
 tau_syn_I="0.5",
 v_init="-65",
 v_reset="-62.0",
 v_rest="-65.0",
 v_thresh="-52.0",
)
nml_doc.IF_curr_alpha.append(pynn0)

pynn1 = HH_cond_exp(
 id="HH_cond_exp_pop_HH_cond_exp",
 cm="0.2",
 e_rev_E="0.0",
 e_rev_I="-80.0",
 e_rev_K="-90.0",
 e_rev_Na="50.0",
 e_rev_leak="-65.0",
 g_leak="0.01",
 gbar_K="6.0",
 gbar_Na="20.0",
 i_offset="0.2",
 tau_syn_E="0.2",
 tau_syn_I="2.0",
 v_init="-65",
 v_offset="-63.0",
)
nml_doc.HH_cond_exp.append(pynn1)

pynnSynn0 = ExpCondSynapse(id="ps1", tau_syn="5", e_rev="0")
nml_doc.exp_cond_synapses.append(pynnSynn0)

nml_file = "tmp/pynn_network.xml"
writers.NeuroMLWriter.write(nml_doc, nml_file)
print("Saved to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

Synapses

"""

Example to create a file with multiple synapse types

"""

from neuroml import NeuroMLDocument
from neuroml import *
import neuroml.writers as writers
from random import random

nml_doc = NeuroMLDocument(id="SomeSynapses")

expOneSyn0 = ExpOneSynapse(id="ampa", tau_decay="5ms", gbase="1nS", erev="0mV")
nml_doc.exp_one_synapses.append(expOneSyn0)

expTwoSyn0 = ExpTwoSynapse(
 id="gaba", tau_decay="12ms", tau_rise="3ms", gbase="1nS", erev="-70mV"
)
nml_doc.exp_two_synapses.append(expTwoSyn0)

bpSyn = BlockingPlasticSynapse(
 id="blockStpSynDep", gbase="1nS", erev="0mV", tau_rise="0.1ms", tau_decay="2ms"
)
bpSyn.notes = "This is a note"
bpSyn.plasticity_mechanism = PlasticityMechanism(
 type="tsodyksMarkramDepMechanism", init_release_prob="0.5", tau_rec="120 ms"
)
bpSyn.block_mechanism = BlockMechanism(
 type="voltageConcDepBlockMechanism",
 species="mg",
 block_concentration="1.2 mM",
 scaling_conc="1.920544 mM",
 scaling_volt="16.129 mV",
)

nml_doc.blocking_plastic_synapses.append(bpSyn)

nml_file = "tmp/synapses.xml"
writers.NeuroMLWriter.write(nml_doc, nml_file)
print("Saved to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

Working with arraymorphs

"""
Example of connecting segments together to create a
multicompartmental model of a cell.

In this case ArrayMorphology will be used rather than
Morphology - demonstrating its similarity and
ability to save in HDF5 format
"""

import neuroml
import neuroml.writers as writers
import neuroml.arraymorph as am

p = neuroml.Point3DWithDiam(x=0, y=0, z=0, diameter=50)
d = neuroml.Point3DWithDiam(x=50, y=0, z=0, diameter=50)
soma = neuroml.Segment(proximal=p, distal=d)
soma.name = "Soma"
soma.id = 0

now make an axon with 100 compartments:

parent = neuroml.SegmentParent(segments=soma.id)
parent_segment = soma
axon_segments = []
seg_id = 1
for i in range(100):
 p = neuroml.Point3DWithDiam(
 x=parent_segment.distal.x,
 y=parent_segment.distal.y,
 z=parent_segment.distal.z,
 diameter=0.1,
)

 d = neuroml.Point3DWithDiam(
 x=parent_segment.distal.x + 10,
 y=parent_segment.distal.y,
 z=parent_segment.distal.z,
 diameter=0.1,
)

 axon_segment = neuroml.Segment(proximal=p, distal=d, parent=parent)

 axon_segment.id = seg_id

 axon_segment.name = "axon_segment_" + str(axon_segment.id)

 # now reset everything:
 parent = neuroml.SegmentParent(segments=axon_segment.id)
 parent_segment = axon_segment
 seg_id += 1

 axon_segments.append(axon_segment)

test_morphology = am.ArrayMorphology()
test_morphology.segments.append(soma)
test_morphology.segments += axon_segments
test_morphology.id = "TestMorphology"

cell = neuroml.Cell()
cell.name = "TestCell"
cell.id = "TestCell"
cell.morphology = test_morphology

doc = neuroml.NeuroMLDocument()
doc.name = "Test neuroML document"

doc.cells.append(cell)
doc.id = "TestNeuroMLDocument"

nml_file = "tmp/arraymorph.nml"

writers.NeuroMLWriter.write(doc, nml_file)

print("Written morphology file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

Working with Izhikevich Cells

These examples were kindly contributed by Steve Marsh

from neuroml import NeuroMLDocument
from neuroml import IzhikevichCell
from neuroml.loaders import NeuroMLLoader
from neuroml.utils import validate_neuroml2

def load_izhikevich(filename="./test_files/SingleIzhikevich.nml"):
 nml_filename = filename
 validate_neuroml2(nml_filename)
 nml_doc = NeuroMLLoader.load(nml_filename)

 iz_cells = nml_doc.izhikevich_cells
 for i, iz in enumerate(iz_cells):
 if isinstance(iz, IzhikevichCell):
 neuron_string = "%d %s %s %s %s %s (%s)" % (
 i,
 iz.v0,
 iz.a,
 iz.b,
 iz.c,
 iz.d,
 iz.id,
)
 print(neuron_string)
 else:
 print("Error: Cell %d is not an IzhikevichCell" % i)

load_izhikevich()

from neuroml import NeuroMLDocument
from neuroml import IzhikevichCell
from neuroml.writers import NeuroMLWriter
from neuroml.utils import validate_neuroml2

def write_izhikevich(filename="./tmp/SingleIzhikevich_test.nml"):
 nml_doc = NeuroMLDocument(id="SingleIzhikevich")
 nml_filename = filename

 iz0 = IzhikevichCell(
 id="iz0", v0="-70mV", thresh="30mV", a="0.02", b="0.2", c="-65.0", d="6"
)

 nml_doc.izhikevich_cells.append(iz0)

 NeuroMLWriter.write(nml_doc, nml_filename)
 validate_neuroml2(nml_filename)

write_izhikevich()

References

	VCC+14

	Michael Vella, Robert C. Cannon, Sharon Crook, Andrew P. Davison, Gautham Ganapathy, Hugh P. C. Robinson, R. Angus Silver, and Padraig Gleeson. Libneuroml and pylems: using python to combine procedural and declarative modeling approaches in computational neuroscience. Frontiers in neuroinformatics, 8:38, 2014. doi:10.3389/fninf.2014.00038 [https://doi.org/10.3389/fninf.2014.00038].

Contributing

	How to contribute
	Setting up

	Sync with upstream

	Working locally on a dedicated branch

	Continuous integration

	Release process

	Regenerating documentation

	Implementation of XML bindings for libNeuroML
	Correct naming conventions

	Addition of helper methods

	Generation of bindings

	Multicompartmental Python API Meeting
	Organisation

	Minutes

	Nodes, Segments and Sections
	Nodes

	Segments

	Sections

	Issues

How to contribute

libNeuroML development happens on GitHub, so you will need a GitHub account to contribute to the repository.
Contributions are made using the standard Pull Request [http://help.github.com/send-pull-requests/] workflow.

Setting up

Please take a look at the GitHub documentation here: http://help.github.com/fork-a-repo/

To begin, please fork the repo on the GitHub website.
You should now have a libNeuroML under you username.
Next, we clone our fork to get a local copy on our computer:

git clone git@github.com:_username_/libNeuroML.git

While not necessary, it is good practice to add the upstream repository as a remote that you will follow:

cd libNeuroML
git remote add upstream https://github.com/NeuralEnsemble/libNeuroML.git
git fetch upstream

You can check which branch are you following doing:

git branch -a

You should have something like:

git branch -a
* master
 remotes/origin/HEAD -> origin/master
 remotes/origin/master
 remotes/upstream/master

Sync with upstream

Before starting to do some work, please check to see that you have the latest copy of the sources in your local repository:

git fetch upstream
git checkout development
git merge upstream/development

Working locally on a dedicated branch

Now that we have a fork, we can start making our changes to the source code.
The best way to do it is to create a branch with a descriptive name to indicate what are you working on.
Generally, your will branch off from the upstream development branch, which will contain the latest code.

For example, just for the sake of this guide, I’m going to work on issue #2.

git checkout development
git checkout -b fix-2

We can work in this branch, and make as many commits as we need to:

hack hack hack
git commit -am "some decent commit message here"

Once we have finished working, we can push the branch online to our fork:

git push origin fix-2

We can then open a pull-request to merge our fix-2 branch into upstream/development.
If your code is not ready to be included, you can update the code on your branch and any more commits you add there will be added to the Pull Request.
Members of the libNeuroML development team will then discuss your changes with you, perhaps suggest tweaks, and then merge it when ready.

Continuous integration

libNeuroML uses continuous integration (Wikipedia [https://en.wikipedia.org/wiki/Continuous_integration]).
Each commit to the master or development branches is tested, along with all commits to pull requests.
The latest status of the continuous integration tests can be seen here on GitHub Actions [https://github.com/NeuralEnsemble/libNeuroML/actions].

Release process

libNeuroML is part of the official NeuroML release cycle.
When a new libNeuroML release is ready the following needs to happen:

	Update version number in setup.py

	update version number in doc/conf.py

	update release number in doc/conf.py (same as version number)

	update changelog in README.md

	merge development branch with master (This should happen via pull request - do not do the merge yourself even if you are an owner of the repository.

	push latest release to PyPi

More information on the NeuroML release process can be found on the NeuroML documentation page [https://docs.neuroml.org/Devdocs/ReleaseProcess.html].

Regenerating documentation

Please create a virtual environment and use the requirements.txt file to install the necessary bits.

In most cases, running make html should be sufficient to regenerate the documentation.
However, if any changes to nml.py have been made, the nml-core-docs.py file in the helpers directory will also need to be run.
This script manually adds each class from nml.py to the documentation as a sub-section using the autoclass sphinx directive instead of the automodule directive which does not allow us to do this.

Implementation of XML bindings for libNeuroML

The GenerateDS Python package is used to automatically generate the NeuroML XML-bindings in libNeuroML from the NeuroML Schema. This technique can be utilized for any XML Schema and is outlined in this section. The addition of helper methods and enforcement of correct naming conventions is also described. For more detail on how Python bindings for XML are generated, the reader is directed to the GenerateDS and libNeuroML documentation. In the following subsections it is assumed that all commands are executed in a top level directory nml and that GenerateDS is installed. It should be noted that enforcement of naming conventions and addition of helper methods are not required by GenerateDS and default values may be used.

Correct naming conventions

A module named generateds_config.py is placed in the nml directory.
This module contains a Python dictionary called NameTable which maps
the original names specified in the XML Schema to user-specified ones.
The NameTable dictionary can be defined explicitly or generated
programmatically, for example using regular expressions.

Addition of helper methods

Helper methods associated with a class can be added to a Python module as string objects. In the case of libNeuroML the module is called helper_methods.py. The precise implementation details are esoteric and the user is referred to the GenerateDS documentation for details of how this functionality is implemented.

Generation of bindings

Once generateds_config.py and a helper methods module are present in the nml directory a valid XML Schema is required by GenerateDS. The following command generates the nml.py module which contains the XML-bindings:

$ generateDS.py -o nml.py --use-getter-setter=none --user-methods=helper_methods NeuroML_v2beta1.xsd

The -o flag sets the file which the module containing the bindings is to be written to. The –use-getter-setter=none option disables getters and setters for class attributes. The –user-methods flag indicates the name of the helper methods module (See section “Addition of helper methods”). The final parameter (NeuroML_v2beta1.xsd) is the name of the XML Schema used for generating the bindings.

Multicompartmental Python API Meeting

Organisation

Dates: 25 & 26 June 2012

Location: Room 336, Rockefeller building, UCL, London

Attendees: Sandra Berger, Andrew Davison, Padraig Gleeson, Mike Hull, Steve Marsh, Michele Mattioni, Eugenio Piasini, Mike Vella

Sponsors: This meeting was generously supported by the INCF Multi Scale Modelling Program [http://www.incf.org/programs/modeling].

Minutes

Agreeing on terminology (segments, etc.) & scope

A discussion on the definitions of the key terms Node, Segment and Section is here, and was the basis for discussions on
these definitions at the meeting:

Nodes, Segments and Sections

Agreements

The Python libNeuroML API will use Node as a key building block for morphologies.

Segment is agreed on as the basis for defining morphologies in NeuroML and will be a top level object in libNeuroML,
where it will be
the part of a neurite between two Nodes (proximal & distal).

Segment Group will be the basis for the grouping of these, and will be used to define dendrites, axons, etc.

Section is a term for the cable-like building block in NEURON, and will not be formally used in NeuroML or libNeuroML.

There was a discussion on whether it would be useful to be able to include this concept “by the back door” to enable
lossless import & export of morphologies from NEURON. Padraig’s proposal was to add an attribute (e.g. primary) to the
segmentGroup element to flag a core set of non overlapping segmentGroups, which are continuous (all children are
connected to distal point of parent) which would correspond to the old “cable” concept in NeuroML v1.x.

There was much discussion on the usefulness of this concept and whether it should be a different element/object in the
API from segmentGroup. The outcome was not fully resolved, but as a first test of this concept, Padraig will add the
new attribute to NeuroML, Mike V will add a flag (boolean?) to the API, and at a later point, when the API begins to
interact with native simulators, we can reevaluate the usefulness of the term.

Mike Vella’s current implementation

This is under development at: https://github.com/NeuralEnsemble/libNeuroML/tree/master/neuroml

Mike will continue on this (almost) full time for the next 2 months.

Following the meeting, he will perform a refactoring operation on the code base to better reflect the names used in NeuroML, e.g.

neuroml_doc

cells

morphology # not entirely sure how this works- contains segment groups and is itself a segment group?

segments

segment_groups

segment_groups

biophysical_properties

notes

morphologies

networks

point currents

ion channels

synapses

extracellular properties

It was also decided that certain SegmentGroup names should have reserved names in libNeuroML, the exact implementation of this is undecided:

	Segment groups with reserved names:
	
soma_group

axon_group

apical_dendrite_group

basal_dendrite_group

It was also decided that a segment should only be able to connect to the root of a morphology, the syntax should be something along the lines of:

segment can only connect to root of a morphology

connect syntax examples:

morph2.attach(2,cell2,0.5) (default frac along = None)

and:

morph[2].attach(cell2,0.5)

Mike V was asked to add a clone method to a morphology.

It was decided that fraction_along should be a property of segment.

The syntax for segment groups should be as follows:
group=morph.segment_groups[‘axon_group’]
(in connect merge groups should be false by default - throw an exception, tell the user setting merge_groups = True or rename group will fix this)

This was a subject of great debate and has not been completely settled.

Morphforge latest developments

Mike Hull gave a brief overview of the latest developments with Morphforge:

https://github.com/mikehulluk/morphforge

He pointed out that it’s still undergoing refactoring, but it can be used by other interested parties, and there is
detailed documentation online regarding installation, examples, etc.

Neuronvisio latest developments

Michele Mattioni gave a status update on Neuronvisio:

http://neuronvisio.org

The application has been closely linked to the NEURON simulator but hopefully use of libNeuroML will allow it to be used independently of
NEURON.

Michele showed Neuronvisio’s native HDF5 format as just one possible way to encode model structure + simulation results:
https://github.com/NeuralEnsemble/libNeuroML/blob/master/hdf5Examples/Neuronvisio_medium_cell_example_10ms.h5

Current Python & NeuroML support in MOOSE

A Skype call/Google Hangout was held on Tues at 9:30 to get an update from Bangalore.

The slides from this discussion are here:

https://github.com/NeuralEnsemble/libNeuroML/blob/master/doc/2012_06_26_neuroml_with_pymoose.pdf

As outlined there there are a number of areas in which MOOSE and Moogli import/export NeuroML version 1.x. A number of issues
and desired features missing in v1.x were highlighted, most of which are implemented or planned for NeuroML v2.0.

There was general enthusiasm about the libNeuroML project, and it was felt that MOOSE should eventually transition to
using libNeuroML to import NeuroML models. This will happen in parallel with updating of the MOOSE PyNN implementation.

The MOOSE developers were also keen to see how the new ComponentTypes in NeuroML 2 will map to inbuilt objects in MOOSE
(e.g. Integrate-and-Fire neurons, Markov channel, Izhikevich). They will add simple examples to the latest MOOSE code to
demonstrate their current implementation and discussion can continue on the mailing lists.

Saving to & loading from XML

There was not any detailed discussion on the various strategies for reading/saving XML in Python.

Padraig’s suggestion based on generateDS.py [http://www.rexx.com/~dkuhlman/generateDS.html]: https://github.com/NeuralEnsemble/libNeuroML/tree/master/ideas/padraig/generatedFromV2Schema
produces a very big file, which while usable as an API, e.g. see:

https://github.com/NeuralEnsemble/libNeuroML/blob/master/hhExample/hh_NEUROML2.py

could do with a lot of refactoring. It was felt that a version of this with a very efficient description of morphologies (and network instances)
based on the current work of Mike V is the way forward.

Storing simulation data as HDF5

The examples at: https://github.com/NeuralEnsemble/libNeuroML/tree/master/hdf5Examples have been updated.

The long term aim would be to arrive at a common format here that can be saved by simulators and that
visualisation packages like Moogli and Neuronvisio can read and display. This may be based on Neo: http://packages.python.org/neo/,
but that package’s current lack of ability to deal with data with nonuniform time points (e.g. produced by variable time step
simulations) may be a limiting factor.

General PyNN & NeuroML v2.0 interoperability

There was agreement that libNeuroML will form the basis of the multicompartmental neuron support in PyNN. The extra functionality needed
to interact with simulators is currently termed “Pyramidal”, but this will eventually be fully merged into PyNN.

http://neuralensemble.org/trac/PyNN
http://www.neuroml.org/NeuroML2CoreTypes/PyNN.html
http://www.neuroml.org/pynn.php

Nodes, Segments and Sections

An attempt to clarify these interrelated terms used in describing morphologies. Names in bold type are used for elements of the
NeuroML object model.

Nodes

A node is a 3D point with diameter information which forms the basis for 3D morphological reconstructions.

These nodes (or points) are the fundamental building blocks in the SWC and Neurolucida formats. This method of description
is based on the assumption that each node is physically connected to another node.

Segments

A segment (according to NeuroML v1&2) is a part of a neuronal tree between two 3D points with diameters (proximal & distal).
The term node isn’t used in NeuroML but the above description describes perfectly well the proximal & distal points.
Cell morphology elements consist of lists of segments (each with unique integer id, and optional name).

All segments, apart from the root segment, have a parent segment. If the proximal point of the segment is not specified,
the distal point of the parent segment is used for the proximal point of the child.

A special case is defined where proximal == distal, and the segment is assumed to be a sphere at that location
with the specified diameter.

Segments can be grouped into segmentGroups in NeuroML v2.0. These can be used to specify “apical_dendrites”, “axon_group”,
etc., which in turn can be used for placing channels on the cell.

An example of a NeuroML v2.0 cell is here [http://sourceforge.net/apps/trac/neuroml/browser/NeuroML2/examples/NML2_SimpleMorphology.nml].

libNeuroML will allow low level access to create and modify morphologies by handling nodes. Segments will also be top
level objects in the API. The XML serialisation will only specify segments with proximal & distal points, but
the HDF5 version may have an efficient serialisation of nodes & segments.

Sections

The concept of section is fundamentally important in NEURON. A section in this simulator is an unbranched cable which can have multiple
3D points outlining the structure of a neurite in 3D. These points are used to determine the surface area along the section. NEURON
can vary the spatial discretisation of the neurite by varying the “nseg” value of the section, e.g. a section with 20 3D
points and nseg =4 will be split into 4 parts of equal length for simulating (as isopotential compartments), with the surface area (and so total channel
conductance) of each determined by the set of 3D points in that part.

There was a similar concept to this in NeuroML v1.x, the cable. Each segment had an attribute for the cable id, and these were used for mapping
to and from NEURON. Cables were unbranched, and so all segments after the first in the cable only had distal points, see
this example [http://www.neuroml.org/NeuroMLValidator/ViewNeuroMLFile.jsp?localFile=NeuroMLFiles/Examples/ChannelML/PyramidalCell.xml].

The cable concept was removed in NeuroML v2.0, as this is was seen as imposing concepts from compartmental modelling
on the basic morphological descriptions of cells. There is only a segmentGroup element for grouping segments, though
a segment can belong to multiple segmentGroups, which don’t need to be unbranched (unlike cables). There may need to be a
new attribute in segmentGroup (e.g. primary or unbranched or cable=”true”) which defines a nonoverlapping set of
unbranched segmentGroups, which can be used as the basis for sections in any parsing application which is interested
in them, or be ignored by any other application.

In libNeuroML, a section-like concept can be added at API level, to facilitate building cells, to facilitate import/export
to/from simulators supporting this concept, and to serve as a basis for recompartmentalisation of cells.

Issues

Dendrites in space

One major issue to address is that in many neuronal reconstructions, the soma is not included (or perhaps just an outline
of the soma is given), only the dendrites are. These dendrites’ 3D start points are on the edge of the soma membrane “floating in space”.
Normal procedure for a modeller in this case is to create a spherical soma at this central point and electrically attach the
dendrites to the centre of this.

In this case (and many others) the physical location of the start of the child segments do not correspond to the electrical (or logical)
connection point on the parent. This has advantages and disadvantages:

(+) It allows the real 3D points of the neuronal reconstruction to be retained (useful for visualisation)

(-) This is not unambiguously captured in the simplest morphological formats like SWC, which assume physical connectivity between nodes/points

This scenario is supported in NeuroML v1&2, where a child segment has the option to redefine its start point (by adding a proximal)
with the child <-> parent relationship defining the electrical connection. This allows lossless import & export from NEURON and
removes the ambiguity of more compact formats like SWC and Neurolucida.

Connections mid segment

Another option for electrical connections (also influences by NEURON sections) is the ability for segments to
(electrically/logically) connect to a point inside a segment. This is specified by adding a fractionAlong attribute
to the parent element, i.e.

<parent segment="2" fractionAlong="0.5"/>

This is not possible in a node based format, but represents a logically consistent description of what the modeller
wants.

What to do?

Two options are available then for a serialisation format or API: should it try to support all of these scenarios, or try to
enforce “best practice”?

PG: I’d argue for the first approach, as it retains as much as possible of what the original reconstructor/simulator specified.
An API which enforces a policy when it encounters a non optimal morphology (e.g. moving all dendrites to connection points,
inserting new nodes) will alter the original data in perhaps unintended ways, and that information will be lost by subsequent readers.
It should be up to each parsing application to decide what to do with the extra information when it reads in a file.

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 neuroml	

 	
 	
 neuroml.loaders	

 	
 	
 neuroml.utils	

 	
 	
 neuroml.writers	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add() (neuroml.nml.generatedssupersuper.GeneratedsSuperSuper method)

 	(neuroml.nml.nml.AdExIaFCell method)

 	(neuroml.nml.nml.AlphaCondSynapse method)

 	(neuroml.nml.nml.AlphaCurrentSynapse method)

 	(neuroml.nml.nml.AlphaCurrSynapse method)

 	(neuroml.nml.nml.AlphaSynapse method)

 	(neuroml.nml.nml.Annotation method)

 	(neuroml.nml.nml.Base method)

 	(neuroml.nml.nml.BaseCell method)

 	(neuroml.nml.nml.BaseCellMembPotCap method)

 	(neuroml.nml.nml.BaseConductanceBasedSynapse method)

 	(neuroml.nml.nml.BaseConductanceBasedSynapseTwo method)

 	(neuroml.nml.nml.BaseConnection method)

 	(neuroml.nml.nml.BaseConnectionNewFormat method)

 	(neuroml.nml.nml.BaseConnectionOldFormat method)

 	(neuroml.nml.nml.BaseCurrentBasedSynapse method)

 	(neuroml.nml.nml.BaseNonNegativeIntegerId method)

 	(neuroml.nml.nml.BaseProjection method)

 	(neuroml.nml.nml.basePyNNCell method)

 	(neuroml.nml.nml.basePyNNIaFCell method)

 	(neuroml.nml.nml.basePyNNIaFCondCell method)

 	(neuroml.nml.nml.BasePynnSynapse method)

 	(neuroml.nml.nml.BaseSynapse method)

 	(neuroml.nml.nml.BaseVoltageDepSynapse method)

 	(neuroml.nml.nml.BaseWithoutId method)

 	(neuroml.nml.nml.BiophysicalProperties method)

 	(neuroml.nml.nml.BiophysicalProperties2CaPools method)

 	(neuroml.nml.nml.BlockingPlasticSynapse method)

 	(neuroml.nml.nml.BlockMechanism method)

 	(neuroml.nml.nml.Case method)

 	(neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	(neuroml.nml.nml.CellSet method)

 	(neuroml.nml.nml.ChannelDensity method)

 	(neuroml.nml.nml.ChannelDensityGHK method)

 	(neuroml.nml.nml.ChannelDensityGHK2 method)

 	(neuroml.nml.nml.ChannelDensityNernst method)

 	(neuroml.nml.nml.ChannelDensityNernstCa2 method)

 	(neuroml.nml.nml.ChannelDensityNonUniform method)

 	(neuroml.nml.nml.ChannelDensityNonUniformGHK method)

 	(neuroml.nml.nml.ChannelDensityNonUniformNernst method)

 	(neuroml.nml.nml.ChannelDensityVShift method)

 	(neuroml.nml.nml.ChannelPopulation method)

 	(neuroml.nml.nml.ClosedState method)

 	(neuroml.nml.nml.ComponentType method)

 	(neuroml.nml.nml.CompoundInput method)

 	(neuroml.nml.nml.CompoundInputDL method)

 	(neuroml.nml.nml.ConcentrationModel_D method)

 	(neuroml.nml.nml.ConditionalDerivedVariable method)

 	(neuroml.nml.nml.Connection method)

 	(neuroml.nml.nml.ConnectionWD method)

 	(neuroml.nml.nml.Constant method)

 	(neuroml.nml.nml.ContinuousConnection method)

 	(neuroml.nml.nml.ContinuousConnectionInstance method)

 	(neuroml.nml.nml.ContinuousConnectionInstanceW method)

 	(neuroml.nml.nml.ContinuousProjection method)

 	(neuroml.nml.nml.DecayingPoolConcentrationModel method)

 	(neuroml.nml.nml.DerivedVariable method)

 	(neuroml.nml.nml.DistalDetails method)

 	(neuroml.nml.nml.DoubleSynapse method)

 	(neuroml.nml.nml.Dynamics method)

 	(neuroml.nml.nml.EIF_cond_alpha_isfa_ista method)

 	(neuroml.nml.nml.EIF_cond_exp_isfa_ista method)

 	(neuroml.nml.nml.ElectricalConnection method)

 	(neuroml.nml.nml.ElectricalConnectionInstance method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW method)

 	(neuroml.nml.nml.ElectricalProjection method)

 	(neuroml.nml.nml.ExpCondSynapse method)

 	(neuroml.nml.nml.ExpCurrSynapse method)

 	(neuroml.nml.nml.ExplicitInput method)

 	(neuroml.nml.nml.ExpOneSynapse method)

 	(neuroml.nml.nml.Exposure method)

 	(neuroml.nml.nml.ExpThreeSynapse method)

 	(neuroml.nml.nml.ExpTwoSynapse method)

 	(neuroml.nml.nml.ExtracellularProperties method)

 	(neuroml.nml.nml.ExtracellularPropertiesLocal method)

 	(neuroml.nml.nml.FitzHughNagumo1969Cell method)

 	(neuroml.nml.nml.FitzHughNagumoCell method)

 	(neuroml.nml.nml.FixedFactorConcentrationModel method)

 	(neuroml.nml.nml.ForwardTransition method)

 	(neuroml.nml.nml.GapJunction method)

 	(neuroml.nml.nml.GateFractional method)

 	(neuroml.nml.nml.GateFractionalSubgate method)

 	(neuroml.nml.nml.GateHHInstantaneous method)

 	(neuroml.nml.nml.GateHHRates method)

 	(neuroml.nml.nml.GateHHRatesInf method)

 	(neuroml.nml.nml.GateHHRatesTau method)

 	(neuroml.nml.nml.GateHHRatesTauInf method)

 	(neuroml.nml.nml.GateHHTauInf method)

 	(neuroml.nml.nml.GateHHUndetermined method)

 	(neuroml.nml.nml.GateKS method)

 	(neuroml.nml.nml.GradedSynapse method)

 	(neuroml.nml.nml.GridLayout method)

 	(neuroml.nml.nml.HH_cond_exp method)

 	(neuroml.nml.nml.HHRate method)

 	(neuroml.nml.nml.HHTime method)

 	(neuroml.nml.nml.HHVariable method)

 	(neuroml.nml.nml.IafCell method)

 	(neuroml.nml.nml.IafRefCell method)

 	(neuroml.nml.nml.IafTauCell method)

 	(neuroml.nml.nml.IafTauRefCell method)

 	(neuroml.nml.nml.IF_cond_alpha method)

 	(neuroml.nml.nml.IF_cond_exp method)

 	(neuroml.nml.nml.IF_curr_alpha method)

 	(neuroml.nml.nml.IF_curr_exp method)

 	(neuroml.nml.nml.Include method)

 	(neuroml.nml.nml.IncludeType method)

 	(neuroml.nml.nml.InhomogeneousParameter method)

 	(neuroml.nml.nml.InhomogeneousValue method)

 	(neuroml.nml.nml.InitMembPotential method)

 	(neuroml.nml.nml.Input method)

 	(neuroml.nml.nml.InputList method)

 	(neuroml.nml.nml.InputW method)

 	(neuroml.nml.nml.Instance method)

 	(neuroml.nml.nml.InstanceRequirement method)

 	(neuroml.nml.nml.IntracellularProperties method)

 	(neuroml.nml.nml.IntracellularProperties2CaPools method)

 	(neuroml.nml.nml.IonChannel method)

 	(neuroml.nml.nml.IonChannelHH method)

 	(neuroml.nml.nml.IonChannelKS method)

 	(neuroml.nml.nml.IonChannelScalable method)

 	(neuroml.nml.nml.IonChannelVShift method)

 	(neuroml.nml.nml.Izhikevich2007Cell method)

 	(neuroml.nml.nml.IzhikevichCell method)

 	(neuroml.nml.nml.Layout method)

 	(neuroml.nml.nml.LEMS_Property method)

 	(neuroml.nml.nml.LinearGradedSynapse method)

 	(neuroml.nml.nml.Location method)

 	(neuroml.nml.nml.Member method)

 	(neuroml.nml.nml.MembraneProperties method)

 	(neuroml.nml.nml.MembraneProperties2CaPools method)

 	(neuroml.nml.nml.Morphology method)

 	(neuroml.nml.nml.NamedDimensionalType method)

 	(neuroml.nml.nml.NamedDimensionalVariable method)

 	(neuroml.nml.nml.Network method)

 	(neuroml.nml.nml.NeuroMLDocument method)

 	(neuroml.nml.nml.OpenState method)

 	(neuroml.nml.nml.Parameter method)

 	(neuroml.nml.nml.Path method)

 	(neuroml.nml.nml.PinskyRinzelCA3Cell method)

 	(neuroml.nml.nml.PlasticityMechanism method)

 	(neuroml.nml.nml.Point3DWithDiam method)

 	(neuroml.nml.nml.PoissonFiringSynapse method)

 	(neuroml.nml.nml.Population method)

 	(neuroml.nml.nml.Projection method)

 	(neuroml.nml.nml.Property method)

 	(neuroml.nml.nml.ProximalDetails method)

 	(neuroml.nml.nml.PulseGenerator method)

 	(neuroml.nml.nml.PulseGeneratorDL method)

 	(neuroml.nml.nml.Q10ConductanceScaling method)

 	(neuroml.nml.nml.Q10Settings method)

 	(neuroml.nml.nml.RampGenerator method)

 	(neuroml.nml.nml.RampGeneratorDL method)

 	(neuroml.nml.nml.RandomLayout method)

 	(neuroml.nml.nml.ReactionScheme method)

 	(neuroml.nml.nml.Region method)

 	(neuroml.nml.nml.Requirement method)

 	(neuroml.nml.nml.Resistivity method)

 	(neuroml.nml.nml.ReverseTransition method)

 	(neuroml.nml.nml.Segment method)

 	(neuroml.nml.nml.SegmentEndPoint method)

 	(neuroml.nml.nml.SegmentGroup method)

 	(neuroml.nml.nml.SegmentParent method)

 	(neuroml.nml.nml.SilentSynapse method)

 	(neuroml.nml.nml.SineGenerator method)

 	(neuroml.nml.nml.SineGeneratorDL method)

 	(neuroml.nml.nml.Space method)

 	(neuroml.nml.nml.SpaceStructure method)

 	(neuroml.nml.nml.Species method)

 	(neuroml.nml.nml.SpecificCapacitance method)

 	(neuroml.nml.nml.Spike method)

 	(neuroml.nml.nml.SpikeArray method)

 	(neuroml.nml.nml.SpikeGenerator method)

 	(neuroml.nml.nml.SpikeGeneratorPoisson method)

 	(neuroml.nml.nml.SpikeGeneratorRandom method)

 	(neuroml.nml.nml.SpikeGeneratorRefPoisson method)

 	(neuroml.nml.nml.SpikeSourcePoisson method)

 	(neuroml.nml.nml.SpikeThresh method)

 	(neuroml.nml.nml.Standalone method)

 	(neuroml.nml.nml.StateVariable method)

 	(neuroml.nml.nml.SubTree method)

 	(neuroml.nml.nml.SynapticConnection method)

 	(neuroml.nml.nml.TauInfTransition method)

 	(neuroml.nml.nml.TimeDerivative method)

 	(neuroml.nml.nml.TimedSynapticInput method)

 	(neuroml.nml.nml.TransientPoissonFiringSynapse method)

 	(neuroml.nml.nml.UnstructuredLayout method)

 	(neuroml.nml.nml.VariableParameter method)

 	(neuroml.nml.nml.VoltageClamp method)

 	(neuroml.nml.nml.VoltageClampTriple method)

 	
 	add_all_to_document() (in module neuroml.utils)

 	add_channel_density() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	add_channel_density_v() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	add_intracellular_property() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	add_membrane_property() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	add_message() (neuroml.nml.generatedscollector.GdsCollector method)

 	add_segment() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	add_segment_group() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	add_unbranched_segment_group() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	add_unbranched_segments() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	AdExIaFCell (class in neuroml.nml.nml)

 	AlphaCondSynapse (class in neuroml.nml.nml)

 	AlphaCurrentSynapse (class in neuroml.nml.nml)

 	AlphaCurrSynapse (class in neuroml.nml.nml)

 	AlphaSynapse (class in neuroml.nml.nml)

 	Annotation (class in neuroml.nml.nml)

 	append() (neuroml.nml.nml.NeuroMLDocument method)

 	append_to_element() (in module neuroml.utils)

 	ArrayMorphLoader (class in neuroml.loaders)

 	ArrayMorphWriter (class in neuroml.writers)

B

 	
 	Base (class in neuroml.nml.nml)

 	BaseCell (class in neuroml.nml.nml)

 	BaseCellMembPotCap (class in neuroml.nml.nml)

 	BaseConductanceBasedSynapse (class in neuroml.nml.nml)

 	BaseConductanceBasedSynapseTwo (class in neuroml.nml.nml)

 	BaseConnection (class in neuroml.nml.nml)

 	BaseConnectionNewFormat (class in neuroml.nml.nml)

 	BaseConnectionOldFormat (class in neuroml.nml.nml)

 	BaseCurrentBasedSynapse (class in neuroml.nml.nml)

 	BaseNonNegativeIntegerId (class in neuroml.nml.nml)

 	BaseProjection (class in neuroml.nml.nml)

 	
 	basePyNNCell (class in neuroml.nml.nml)

 	basePyNNIaFCell (class in neuroml.nml.nml)

 	basePyNNIaFCondCell (class in neuroml.nml.nml)

 	BasePynnSynapse (class in neuroml.nml.nml)

 	BaseSynapse (class in neuroml.nml.nml)

 	BaseVoltageDepSynapse (class in neuroml.nml.nml)

 	BaseWithoutId (class in neuroml.nml.nml)

 	BiophysicalProperties (class in neuroml.nml.nml)

 	BiophysicalProperties2CaPools (class in neuroml.nml.nml)

 	BlockingPlasticSynapse (class in neuroml.nml.nml)

 	BlockMechanism (class in neuroml.nml.nml)

C

 	
 	Case (class in neuroml.nml.nml)

 	Cell (class in neuroml.nml.nml)

 	Cell2CaPools (class in neuroml.nml.nml)

 	CellSet (class in neuroml.nml.nml)

 	ChannelDensity (class in neuroml.nml.nml)

 	ChannelDensityGHK (class in neuroml.nml.nml)

 	ChannelDensityGHK2 (class in neuroml.nml.nml)

 	ChannelDensityNernst (class in neuroml.nml.nml)

 	ChannelDensityNernstCa2 (class in neuroml.nml.nml)

 	ChannelDensityNonUniform (class in neuroml.nml.nml)

 	ChannelDensityNonUniformGHK (class in neuroml.nml.nml)

 	ChannelDensityNonUniformNernst (class in neuroml.nml.nml)

 	ChannelDensityVShift (class in neuroml.nml.nml)

 	ChannelPopulation (class in neuroml.nml.nml)

 	clear_messages() (neuroml.nml.generatedscollector.GdsCollector method)

 	ClosedState (class in neuroml.nml.nml)

 	component_factory() (in module neuroml.utils)

 	(neuroml.nml.generatedssupersuper.GeneratedsSuperSuper class method)

 	(neuroml.nml.nml.AdExIaFCell class method)

 	(neuroml.nml.nml.AlphaCondSynapse class method)

 	(neuroml.nml.nml.AlphaCurrentSynapse class method)

 	(neuroml.nml.nml.AlphaCurrSynapse class method)

 	(neuroml.nml.nml.AlphaSynapse class method)

 	(neuroml.nml.nml.Annotation class method)

 	(neuroml.nml.nml.Base class method)

 	(neuroml.nml.nml.BaseCell class method)

 	(neuroml.nml.nml.BaseCellMembPotCap class method)

 	(neuroml.nml.nml.BaseConductanceBasedSynapse class method)

 	(neuroml.nml.nml.BaseConductanceBasedSynapseTwo class method)

 	(neuroml.nml.nml.BaseConnection class method)

 	(neuroml.nml.nml.BaseConnectionNewFormat class method)

 	(neuroml.nml.nml.BaseConnectionOldFormat class method)

 	(neuroml.nml.nml.BaseCurrentBasedSynapse class method)

 	(neuroml.nml.nml.BaseNonNegativeIntegerId class method)

 	(neuroml.nml.nml.BaseProjection class method)

 	(neuroml.nml.nml.basePyNNCell class method)

 	(neuroml.nml.nml.basePyNNIaFCell class method)

 	(neuroml.nml.nml.basePyNNIaFCondCell class method)

 	(neuroml.nml.nml.BasePynnSynapse class method)

 	(neuroml.nml.nml.BaseSynapse class method)

 	(neuroml.nml.nml.BaseVoltageDepSynapse class method)

 	(neuroml.nml.nml.BaseWithoutId class method)

 	(neuroml.nml.nml.BiophysicalProperties class method)

 	(neuroml.nml.nml.BiophysicalProperties2CaPools class method)

 	(neuroml.nml.nml.BlockingPlasticSynapse class method)

 	(neuroml.nml.nml.BlockMechanism class method)

 	(neuroml.nml.nml.Case class method)

 	(neuroml.nml.nml.Cell class method)

 	(neuroml.nml.nml.Cell2CaPools class method)

 	(neuroml.nml.nml.CellSet class method)

 	(neuroml.nml.nml.ChannelDensity class method)

 	(neuroml.nml.nml.ChannelDensityGHK class method)

 	(neuroml.nml.nml.ChannelDensityGHK2 class method)

 	(neuroml.nml.nml.ChannelDensityNernst class method)

 	(neuroml.nml.nml.ChannelDensityNernstCa2 class method)

 	(neuroml.nml.nml.ChannelDensityNonUniform class method)

 	(neuroml.nml.nml.ChannelDensityNonUniformGHK class method)

 	(neuroml.nml.nml.ChannelDensityNonUniformNernst class method)

 	(neuroml.nml.nml.ChannelDensityVShift class method)

 	(neuroml.nml.nml.ChannelPopulation class method)

 	(neuroml.nml.nml.ClosedState class method)

 	(neuroml.nml.nml.ComponentType class method)

 	(neuroml.nml.nml.CompoundInput class method)

 	(neuroml.nml.nml.CompoundInputDL class method)

 	(neuroml.nml.nml.ConcentrationModel_D class method)

 	(neuroml.nml.nml.ConditionalDerivedVariable class method)

 	(neuroml.nml.nml.Connection class method)

 	(neuroml.nml.nml.ConnectionWD class method)

 	(neuroml.nml.nml.Constant class method)

 	(neuroml.nml.nml.ContinuousConnection class method)

 	(neuroml.nml.nml.ContinuousConnectionInstance class method)

 	(neuroml.nml.nml.ContinuousConnectionInstanceW class method)

 	(neuroml.nml.nml.ContinuousProjection class method)

 	(neuroml.nml.nml.DecayingPoolConcentrationModel class method)

 	(neuroml.nml.nml.DerivedVariable class method)

 	(neuroml.nml.nml.DistalDetails class method)

 	(neuroml.nml.nml.DoubleSynapse class method)

 	(neuroml.nml.nml.Dynamics class method)

 	(neuroml.nml.nml.EIF_cond_alpha_isfa_ista class method)

 	(neuroml.nml.nml.EIF_cond_exp_isfa_ista class method)

 	(neuroml.nml.nml.ElectricalConnection class method)

 	(neuroml.nml.nml.ElectricalConnectionInstance class method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW class method)

 	(neuroml.nml.nml.ElectricalProjection class method)

 	(neuroml.nml.nml.ExpCondSynapse class method)

 	(neuroml.nml.nml.ExpCurrSynapse class method)

 	(neuroml.nml.nml.ExplicitInput class method)

 	(neuroml.nml.nml.ExpOneSynapse class method)

 	(neuroml.nml.nml.Exposure class method)

 	(neuroml.nml.nml.ExpThreeSynapse class method)

 	(neuroml.nml.nml.ExpTwoSynapse class method)

 	(neuroml.nml.nml.ExtracellularProperties class method)

 	(neuroml.nml.nml.ExtracellularPropertiesLocal class method)

 	(neuroml.nml.nml.FitzHughNagumo1969Cell class method)

 	(neuroml.nml.nml.FitzHughNagumoCell class method)

 	(neuroml.nml.nml.FixedFactorConcentrationModel class method)

 	(neuroml.nml.nml.ForwardTransition class method)

 	(neuroml.nml.nml.GapJunction class method)

 	(neuroml.nml.nml.GateFractional class method)

 	(neuroml.nml.nml.GateFractionalSubgate class method)

 	(neuroml.nml.nml.GateHHInstantaneous class method)

 	(neuroml.nml.nml.GateHHRates class method)

 	(neuroml.nml.nml.GateHHRatesInf class method)

 	(neuroml.nml.nml.GateHHRatesTau class method)

 	(neuroml.nml.nml.GateHHRatesTauInf class method)

 	(neuroml.nml.nml.GateHHTauInf class method)

 	(neuroml.nml.nml.GateHHUndetermined class method)

 	(neuroml.nml.nml.GateKS class method)

 	(neuroml.nml.nml.GradedSynapse class method)

 	(neuroml.nml.nml.GridLayout class method)

 	(neuroml.nml.nml.HH_cond_exp class method)

 	(neuroml.nml.nml.HHRate class method)

 	(neuroml.nml.nml.HHTime class method)

 	(neuroml.nml.nml.HHVariable class method)

 	(neuroml.nml.nml.IafCell class method)

 	(neuroml.nml.nml.IafRefCell class method)

 	(neuroml.nml.nml.IafTauCell class method)

 	(neuroml.nml.nml.IafTauRefCell class method)

 	(neuroml.nml.nml.IF_cond_alpha class method)

 	(neuroml.nml.nml.IF_cond_exp class method)

 	(neuroml.nml.nml.IF_curr_alpha class method)

 	(neuroml.nml.nml.IF_curr_exp class method)

 	(neuroml.nml.nml.Include class method)

 	(neuroml.nml.nml.IncludeType class method)

 	(neuroml.nml.nml.InhomogeneousParameter class method)

 	(neuroml.nml.nml.InhomogeneousValue class method)

 	(neuroml.nml.nml.InitMembPotential class method)

 	(neuroml.nml.nml.Input class method)

 	(neuroml.nml.nml.InputList class method)

 	(neuroml.nml.nml.InputW class method)

 	(neuroml.nml.nml.Instance class method)

 	(neuroml.nml.nml.InstanceRequirement class method)

 	(neuroml.nml.nml.IntracellularProperties class method)

 	(neuroml.nml.nml.IntracellularProperties2CaPools class method)

 	(neuroml.nml.nml.IonChannel class method)

 	(neuroml.nml.nml.IonChannelHH class method)

 	(neuroml.nml.nml.IonChannelKS class method)

 	(neuroml.nml.nml.IonChannelScalable class method)

 	(neuroml.nml.nml.IonChannelVShift class method)

 	(neuroml.nml.nml.Izhikevich2007Cell class method)

 	(neuroml.nml.nml.IzhikevichCell class method)

 	(neuroml.nml.nml.Layout class method)

 	(neuroml.nml.nml.LEMS_Property class method)

 	(neuroml.nml.nml.LinearGradedSynapse class method)

 	(neuroml.nml.nml.Location class method)

 	(neuroml.nml.nml.Member class method)

 	(neuroml.nml.nml.MembraneProperties class method)

 	(neuroml.nml.nml.MembraneProperties2CaPools class method)

 	(neuroml.nml.nml.Morphology class method)

 	(neuroml.nml.nml.NamedDimensionalType class method)

 	(neuroml.nml.nml.NamedDimensionalVariable class method)

 	(neuroml.nml.nml.Network class method)

 	(neuroml.nml.nml.NeuroMLDocument class method)

 	(neuroml.nml.nml.OpenState class method)

 	(neuroml.nml.nml.Parameter class method)

 	(neuroml.nml.nml.Path class method)

 	(neuroml.nml.nml.PinskyRinzelCA3Cell class method)

 	(neuroml.nml.nml.PlasticityMechanism class method)

 	(neuroml.nml.nml.Point3DWithDiam class method)

 	(neuroml.nml.nml.PoissonFiringSynapse class method)

 	(neuroml.nml.nml.Population class method)

 	(neuroml.nml.nml.Projection class method)

 	(neuroml.nml.nml.Property class method)

 	(neuroml.nml.nml.ProximalDetails class method)

 	(neuroml.nml.nml.PulseGenerator class method)

 	(neuroml.nml.nml.PulseGeneratorDL class method)

 	(neuroml.nml.nml.Q10ConductanceScaling class method)

 	(neuroml.nml.nml.Q10Settings class method)

 	(neuroml.nml.nml.RampGenerator class method)

 	(neuroml.nml.nml.RampGeneratorDL class method)

 	(neuroml.nml.nml.RandomLayout class method)

 	(neuroml.nml.nml.ReactionScheme class method)

 	(neuroml.nml.nml.Region class method)

 	(neuroml.nml.nml.Requirement class method)

 	(neuroml.nml.nml.Resistivity class method)

 	(neuroml.nml.nml.ReverseTransition class method)

 	(neuroml.nml.nml.Segment class method)

 	(neuroml.nml.nml.SegmentEndPoint class method)

 	(neuroml.nml.nml.SegmentGroup class method)

 	(neuroml.nml.nml.SegmentParent class method)

 	(neuroml.nml.nml.SilentSynapse class method)

 	(neuroml.nml.nml.SineGenerator class method)

 	(neuroml.nml.nml.SineGeneratorDL class method)

 	(neuroml.nml.nml.Space class method)

 	(neuroml.nml.nml.SpaceStructure class method)

 	(neuroml.nml.nml.Species class method)

 	(neuroml.nml.nml.SpecificCapacitance class method)

 	(neuroml.nml.nml.Spike class method)

 	(neuroml.nml.nml.SpikeArray class method)

 	(neuroml.nml.nml.SpikeGenerator class method)

 	(neuroml.nml.nml.SpikeGeneratorPoisson class method)

 	(neuroml.nml.nml.SpikeGeneratorRandom class method)

 	(neuroml.nml.nml.SpikeGeneratorRefPoisson class method)

 	(neuroml.nml.nml.SpikeSourcePoisson class method)

 	(neuroml.nml.nml.SpikeThresh class method)

 	(neuroml.nml.nml.Standalone class method)

 	(neuroml.nml.nml.StateVariable class method)

 	(neuroml.nml.nml.SubTree class method)

 	(neuroml.nml.nml.SynapticConnection class method)

 	(neuroml.nml.nml.TauInfTransition class method)

 	(neuroml.nml.nml.TimeDerivative class method)

 	(neuroml.nml.nml.TimedSynapticInput class method)

 	(neuroml.nml.nml.TransientPoissonFiringSynapse class method)

 	(neuroml.nml.nml.UnstructuredLayout class method)

 	(neuroml.nml.nml.VariableParameter class method)

 	(neuroml.nml.nml.VoltageClamp class method)

 	(neuroml.nml.nml.VoltageClampTriple class method)

 	
 	ComponentType (class in neuroml.nml.nml)

 	CompoundInput (class in neuroml.nml.nml)

 	CompoundInputDL (class in neuroml.nml.nml)

 	ConcentrationModel_D (class in neuroml.nml.nml)

 	ConditionalDerivedVariable (class in neuroml.nml.nml)

 	Connection (class in neuroml.nml.nml)

 	ConnectionWD (class in neuroml.nml.nml)

 	Constant (class in neuroml.nml.nml)

 	ContinuousConnection (class in neuroml.nml.nml)

 	ContinuousConnectionInstance (class in neuroml.nml.nml)

 	ContinuousConnectionInstanceW (class in neuroml.nml.nml)

 	ContinuousProjection (class in neuroml.nml.nml)

 	create_unbranched_segment_group_branches() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	ctinfo() (in module neuroml.utils)

 	ctparentinfo() (in module neuroml.utils)

D

 	
 	DecayingPoolConcentrationModel (class in neuroml.nml.nml)

 	DerivedVariable (class in neuroml.nml.nml)

 	DistalDetails (class in neuroml.nml.nml)

 	
 	distance_to() (neuroml.nml.nml.Point3DWithDiam method)

 	DoubleSynapse (class in neuroml.nml.nml)

 	Dynamics (class in neuroml.nml.nml)

E

 	
 	EIF_cond_alpha_isfa_ista (class in neuroml.nml.nml)

 	EIF_cond_exp_isfa_ista (class in neuroml.nml.nml)

 	ElectricalConnection (class in neuroml.nml.nml)

 	ElectricalConnectionInstance (class in neuroml.nml.nml)

 	ElectricalConnectionInstanceW (class in neuroml.nml.nml)

 	ElectricalProjection (class in neuroml.nml.nml)

 	ExpCondSynapse (class in neuroml.nml.nml)

 	ExpCurrSynapse (class in neuroml.nml.nml)

 	ExplicitInput (class in neuroml.nml.nml)

 	ExpOneSynapse (class in neuroml.nml.nml)

 	
 	exportHdf5() (neuroml.nml.nml.ContinuousProjection method)

 	(neuroml.nml.nml.ElectricalProjection method)

 	(neuroml.nml.nml.InputList method)

 	(neuroml.nml.nml.Network method)

 	(neuroml.nml.nml.Population method)

 	(neuroml.nml.nml.Projection method)

 	Exposure (class in neuroml.nml.nml)

 	ExpThreeSynapse (class in neuroml.nml.nml)

 	ExpTwoSynapse (class in neuroml.nml.nml)

 	ExtracellularProperties (class in neuroml.nml.nml)

 	ExtracellularPropertiesLocal (class in neuroml.nml.nml)

F

 	
 	FitzHughNagumo1969Cell (class in neuroml.nml.nml)

 	FitzHughNagumoCell (class in neuroml.nml.nml)

 	
 	FixedFactorConcentrationModel (class in neuroml.nml.nml)

 	ForwardTransition (class in neuroml.nml.nml)

G

 	
 	GapJunction (class in neuroml.nml.nml)

 	GateFractional (class in neuroml.nml.nml)

 	GateFractionalSubgate (class in neuroml.nml.nml)

 	GateHHInstantaneous (class in neuroml.nml.nml)

 	GateHHRates (class in neuroml.nml.nml)

 	GateHHRatesInf (class in neuroml.nml.nml)

 	GateHHRatesTau (class in neuroml.nml.nml)

 	GateHHRatesTauInf (class in neuroml.nml.nml)

 	GateHHTauInf (class in neuroml.nml.nml)

 	GateHHUndetermined (class in neuroml.nml.nml)

 	GateKS (class in neuroml.nml.nml)

 	GdsCollector (class in neuroml.nml.generatedscollector)

 	GeneratedsSuper (class in neuroml.nml.nml)

 	GeneratedsSuperSuper (class in neuroml.nml.generatedssupersuper)

 	get_actual_proximal() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	get_all_segments_in_group() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	get_by_id() (neuroml.nml.nml.Network method)

 	(neuroml.nml.nml.NeuroMLDocument method)

 	get_delay_in_ms() (neuroml.nml.nml.ConnectionWD method)

 	get_fraction_along() (neuroml.nml.nml.ExplicitInput method)

 	(neuroml.nml.nml.Input method)

 	(neuroml.nml.nml.InputW method)

 	get_messages() (neuroml.nml.generatedscollector.GdsCollector method)

 	get_ordered_segments_in_groups() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	get_post_cell_id() (neuroml.nml.nml.Connection method)

 	(neuroml.nml.nml.ConnectionWD method)

 	(neuroml.nml.nml.ContinuousConnection method)

 	(neuroml.nml.nml.ContinuousConnectionInstance method)

 	(neuroml.nml.nml.ContinuousConnectionInstanceW method)

 	(neuroml.nml.nml.ElectricalConnection method)

 	(neuroml.nml.nml.ElectricalConnectionInstance method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW method)

 	get_post_fraction_along() (neuroml.nml.nml.Connection method)

 	(neuroml.nml.nml.ConnectionWD method)

 	(neuroml.nml.nml.ContinuousConnection method)

 	(neuroml.nml.nml.ContinuousConnectionInstance method)

 	(neuroml.nml.nml.ContinuousConnectionInstanceW method)

 	(neuroml.nml.nml.ElectricalConnection method)

 	(neuroml.nml.nml.ElectricalConnectionInstance method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW method)

 	get_post_info() (neuroml.nml.nml.Connection method)

 	(neuroml.nml.nml.ConnectionWD method)

 	(neuroml.nml.nml.ContinuousConnection method)

 	(neuroml.nml.nml.ContinuousConnectionInstance method)

 	(neuroml.nml.nml.ContinuousConnectionInstanceW method)

 	(neuroml.nml.nml.ElectricalConnection method)

 	(neuroml.nml.nml.ElectricalConnectionInstance method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW method)

 	get_post_segment_id() (neuroml.nml.nml.Connection method)

 	(neuroml.nml.nml.ConnectionWD method)

 	(neuroml.nml.nml.ContinuousConnection method)

 	(neuroml.nml.nml.ContinuousConnectionInstance method)

 	(neuroml.nml.nml.ContinuousConnectionInstanceW method)

 	(neuroml.nml.nml.ElectricalConnection method)

 	(neuroml.nml.nml.ElectricalConnectionInstance method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW method)

 	get_pre_cell_id() (neuroml.nml.nml.Connection method)

 	(neuroml.nml.nml.ConnectionWD method)

 	(neuroml.nml.nml.ContinuousConnection method)

 	(neuroml.nml.nml.ContinuousConnectionInstance method)

 	(neuroml.nml.nml.ContinuousConnectionInstanceW method)

 	(neuroml.nml.nml.ElectricalConnection method)

 	(neuroml.nml.nml.ElectricalConnectionInstance method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW method)

 	
 	get_pre_fraction_along() (neuroml.nml.nml.Connection method)

 	(neuroml.nml.nml.ConnectionWD method)

 	(neuroml.nml.nml.ContinuousConnection method)

 	(neuroml.nml.nml.ContinuousConnectionInstance method)

 	(neuroml.nml.nml.ContinuousConnectionInstanceW method)

 	(neuroml.nml.nml.ElectricalConnection method)

 	(neuroml.nml.nml.ElectricalConnectionInstance method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW method)

 	get_pre_info() (neuroml.nml.nml.Connection method)

 	(neuroml.nml.nml.ConnectionWD method)

 	(neuroml.nml.nml.ContinuousConnection method)

 	(neuroml.nml.nml.ContinuousConnectionInstance method)

 	(neuroml.nml.nml.ContinuousConnectionInstanceW method)

 	(neuroml.nml.nml.ElectricalConnection method)

 	(neuroml.nml.nml.ElectricalConnectionInstance method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW method)

 	get_pre_segment_id() (neuroml.nml.nml.Connection method)

 	(neuroml.nml.nml.ConnectionWD method)

 	(neuroml.nml.nml.ContinuousConnection method)

 	(neuroml.nml.nml.ContinuousConnectionInstance method)

 	(neuroml.nml.nml.ContinuousConnectionInstanceW method)

 	(neuroml.nml.nml.ElectricalConnection method)

 	(neuroml.nml.nml.ElectricalConnectionInstance method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW method)

 	get_segment() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	get_segment_adjacency_list() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	get_segment_group() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	get_segment_groups_by_substring() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	get_segment_id() (neuroml.nml.nml.ExplicitInput method)

 	(neuroml.nml.nml.Input method)

 	(neuroml.nml.nml.InputW method)

 	get_segment_ids_vs_segments() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	get_segment_length() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	get_segment_surface_area() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	get_segment_volume() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	get_segments_by_substring() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	get_size() (neuroml.nml.nml.Population method)

 	get_summary() (in module neuroml.utils)

 	get_target_cell_id() (neuroml.nml.nml.ExplicitInput method)

 	(neuroml.nml.nml.Input method)

 	(neuroml.nml.nml.InputW method)

 	get_target_population() (neuroml.nml.nml.ExplicitInput method)

 	get_weight() (neuroml.nml.nml.ContinuousConnectionInstanceW method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW method)

 	(neuroml.nml.nml.InputW method)

 	GradedSynapse (class in neuroml.nml.nml)

 	GridLayout (class in neuroml.nml.nml)

H

 	
 	has_segment_fraction_info() (in module neuroml.utils)

 	HH_cond_exp (class in neuroml.nml.nml)

 	
 	HHRate (class in neuroml.nml.nml)

 	HHTime (class in neuroml.nml.nml)

 	HHVariable (class in neuroml.nml.nml)

I

 	
 	IafCell (class in neuroml.nml.nml)

 	IafRefCell (class in neuroml.nml.nml)

 	IafTauCell (class in neuroml.nml.nml)

 	IafTauRefCell (class in neuroml.nml.nml)

 	IF_cond_alpha (class in neuroml.nml.nml)

 	IF_cond_exp (class in neuroml.nml.nml)

 	IF_curr_alpha (class in neuroml.nml.nml)

 	IF_curr_exp (class in neuroml.nml.nml)

 	Include (class in neuroml.nml.nml)

 	IncludeType (class in neuroml.nml.nml)

 	info() (neuroml.nml.generatedssupersuper.GeneratedsSuperSuper method)

 	(neuroml.nml.nml.AdExIaFCell method)

 	(neuroml.nml.nml.AlphaCondSynapse method)

 	(neuroml.nml.nml.AlphaCurrentSynapse method)

 	(neuroml.nml.nml.AlphaCurrSynapse method)

 	(neuroml.nml.nml.AlphaSynapse method)

 	(neuroml.nml.nml.Annotation method)

 	(neuroml.nml.nml.Base method)

 	(neuroml.nml.nml.BaseCell method)

 	(neuroml.nml.nml.BaseCellMembPotCap method)

 	(neuroml.nml.nml.BaseConductanceBasedSynapse method)

 	(neuroml.nml.nml.BaseConductanceBasedSynapseTwo method)

 	(neuroml.nml.nml.BaseConnection method)

 	(neuroml.nml.nml.BaseConnectionNewFormat method)

 	(neuroml.nml.nml.BaseConnectionOldFormat method)

 	(neuroml.nml.nml.BaseCurrentBasedSynapse method)

 	(neuroml.nml.nml.BaseNonNegativeIntegerId method)

 	(neuroml.nml.nml.BaseProjection method)

 	(neuroml.nml.nml.basePyNNCell method)

 	(neuroml.nml.nml.basePyNNIaFCell method)

 	(neuroml.nml.nml.basePyNNIaFCondCell method)

 	(neuroml.nml.nml.BasePynnSynapse method)

 	(neuroml.nml.nml.BaseSynapse method)

 	(neuroml.nml.nml.BaseVoltageDepSynapse method)

 	(neuroml.nml.nml.BaseWithoutId method)

 	(neuroml.nml.nml.BiophysicalProperties method)

 	(neuroml.nml.nml.BiophysicalProperties2CaPools method)

 	(neuroml.nml.nml.BlockingPlasticSynapse method)

 	(neuroml.nml.nml.BlockMechanism method)

 	(neuroml.nml.nml.Case method)

 	(neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	(neuroml.nml.nml.CellSet method)

 	(neuroml.nml.nml.ChannelDensity method)

 	(neuroml.nml.nml.ChannelDensityGHK method)

 	(neuroml.nml.nml.ChannelDensityGHK2 method)

 	(neuroml.nml.nml.ChannelDensityNernst method)

 	(neuroml.nml.nml.ChannelDensityNernstCa2 method)

 	(neuroml.nml.nml.ChannelDensityNonUniform method)

 	(neuroml.nml.nml.ChannelDensityNonUniformGHK method)

 	(neuroml.nml.nml.ChannelDensityNonUniformNernst method)

 	(neuroml.nml.nml.ChannelDensityVShift method)

 	(neuroml.nml.nml.ChannelPopulation method)

 	(neuroml.nml.nml.ClosedState method)

 	(neuroml.nml.nml.ComponentType method)

 	(neuroml.nml.nml.CompoundInput method)

 	(neuroml.nml.nml.CompoundInputDL method)

 	(neuroml.nml.nml.ConcentrationModel_D method)

 	(neuroml.nml.nml.ConditionalDerivedVariable method)

 	(neuroml.nml.nml.Connection method)

 	(neuroml.nml.nml.ConnectionWD method)

 	(neuroml.nml.nml.Constant method)

 	(neuroml.nml.nml.ContinuousConnection method)

 	(neuroml.nml.nml.ContinuousConnectionInstance method)

 	(neuroml.nml.nml.ContinuousConnectionInstanceW method)

 	(neuroml.nml.nml.ContinuousProjection method)

 	(neuroml.nml.nml.DecayingPoolConcentrationModel method)

 	(neuroml.nml.nml.DerivedVariable method)

 	(neuroml.nml.nml.DistalDetails method)

 	(neuroml.nml.nml.DoubleSynapse method)

 	(neuroml.nml.nml.Dynamics method)

 	(neuroml.nml.nml.EIF_cond_alpha_isfa_ista method)

 	(neuroml.nml.nml.EIF_cond_exp_isfa_ista method)

 	(neuroml.nml.nml.ElectricalConnection method)

 	(neuroml.nml.nml.ElectricalConnectionInstance method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW method)

 	(neuroml.nml.nml.ElectricalProjection method)

 	(neuroml.nml.nml.ExpCondSynapse method)

 	(neuroml.nml.nml.ExpCurrSynapse method)

 	(neuroml.nml.nml.ExplicitInput method)

 	(neuroml.nml.nml.ExpOneSynapse method)

 	(neuroml.nml.nml.Exposure method)

 	(neuroml.nml.nml.ExpThreeSynapse method)

 	(neuroml.nml.nml.ExpTwoSynapse method)

 	(neuroml.nml.nml.ExtracellularProperties method)

 	(neuroml.nml.nml.ExtracellularPropertiesLocal method)

 	(neuroml.nml.nml.FitzHughNagumo1969Cell method)

 	(neuroml.nml.nml.FitzHughNagumoCell method)

 	(neuroml.nml.nml.FixedFactorConcentrationModel method)

 	(neuroml.nml.nml.ForwardTransition method)

 	(neuroml.nml.nml.GapJunction method)

 	(neuroml.nml.nml.GateFractional method)

 	(neuroml.nml.nml.GateFractionalSubgate method)

 	(neuroml.nml.nml.GateHHInstantaneous method)

 	(neuroml.nml.nml.GateHHRates method)

 	(neuroml.nml.nml.GateHHRatesInf method)

 	(neuroml.nml.nml.GateHHRatesTau method)

 	(neuroml.nml.nml.GateHHRatesTauInf method)

 	(neuroml.nml.nml.GateHHTauInf method)

 	(neuroml.nml.nml.GateHHUndetermined method)

 	(neuroml.nml.nml.GateKS method)

 	(neuroml.nml.nml.GradedSynapse method)

 	(neuroml.nml.nml.GridLayout method)

 	(neuroml.nml.nml.HH_cond_exp method)

 	(neuroml.nml.nml.HHRate method)

 	(neuroml.nml.nml.HHTime method)

 	(neuroml.nml.nml.HHVariable method)

 	(neuroml.nml.nml.IafCell method)

 	(neuroml.nml.nml.IafRefCell method)

 	(neuroml.nml.nml.IafTauCell method)

 	(neuroml.nml.nml.IafTauRefCell method)

 	(neuroml.nml.nml.IF_cond_alpha method)

 	(neuroml.nml.nml.IF_cond_exp method)

 	(neuroml.nml.nml.IF_curr_alpha method)

 	(neuroml.nml.nml.IF_curr_exp method)

 	(neuroml.nml.nml.Include method)

 	(neuroml.nml.nml.IncludeType method)

 	(neuroml.nml.nml.InhomogeneousParameter method)

 	(neuroml.nml.nml.InhomogeneousValue method)

 	(neuroml.nml.nml.InitMembPotential method)

 	(neuroml.nml.nml.Input method)

 	(neuroml.nml.nml.InputList method)

 	(neuroml.nml.nml.InputW method)

 	(neuroml.nml.nml.Instance method)

 	(neuroml.nml.nml.InstanceRequirement method)

 	(neuroml.nml.nml.IntracellularProperties method)

 	(neuroml.nml.nml.IntracellularProperties2CaPools method)

 	(neuroml.nml.nml.IonChannel method)

 	(neuroml.nml.nml.IonChannelHH method)

 	(neuroml.nml.nml.IonChannelKS method)

 	(neuroml.nml.nml.IonChannelScalable method)

 	(neuroml.nml.nml.IonChannelVShift method)

 	(neuroml.nml.nml.Izhikevich2007Cell method)

 	(neuroml.nml.nml.IzhikevichCell method)

 	(neuroml.nml.nml.Layout method)

 	(neuroml.nml.nml.LEMS_Property method)

 	(neuroml.nml.nml.LinearGradedSynapse method)

 	(neuroml.nml.nml.Location method)

 	(neuroml.nml.nml.Member method)

 	(neuroml.nml.nml.MembraneProperties method)

 	(neuroml.nml.nml.MembraneProperties2CaPools method)

 	(neuroml.nml.nml.Morphology method)

 	(neuroml.nml.nml.NamedDimensionalType method)

 	(neuroml.nml.nml.NamedDimensionalVariable method)

 	(neuroml.nml.nml.Network method)

 	(neuroml.nml.nml.NeuroMLDocument method)

 	(neuroml.nml.nml.OpenState method)

 	(neuroml.nml.nml.Parameter method)

 	(neuroml.nml.nml.Path method)

 	(neuroml.nml.nml.PinskyRinzelCA3Cell method)

 	(neuroml.nml.nml.PlasticityMechanism method)

 	(neuroml.nml.nml.Point3DWithDiam method)

 	(neuroml.nml.nml.PoissonFiringSynapse method)

 	(neuroml.nml.nml.Population method)

 	(neuroml.nml.nml.Projection method)

 	(neuroml.nml.nml.Property method)

 	(neuroml.nml.nml.ProximalDetails method)

 	(neuroml.nml.nml.PulseGenerator method)

 	(neuroml.nml.nml.PulseGeneratorDL method)

 	(neuroml.nml.nml.Q10ConductanceScaling method)

 	(neuroml.nml.nml.Q10Settings method)

 	(neuroml.nml.nml.RampGenerator method)

 	(neuroml.nml.nml.RampGeneratorDL method)

 	(neuroml.nml.nml.RandomLayout method)

 	(neuroml.nml.nml.ReactionScheme method)

 	(neuroml.nml.nml.Region method)

 	(neuroml.nml.nml.Requirement method)

 	(neuroml.nml.nml.Resistivity method)

 	(neuroml.nml.nml.ReverseTransition method)

 	(neuroml.nml.nml.Segment method)

 	(neuroml.nml.nml.SegmentEndPoint method)

 	(neuroml.nml.nml.SegmentGroup method)

 	(neuroml.nml.nml.SegmentParent method)

 	(neuroml.nml.nml.SilentSynapse method)

 	(neuroml.nml.nml.SineGenerator method)

 	(neuroml.nml.nml.SineGeneratorDL method)

 	(neuroml.nml.nml.Space method)

 	(neuroml.nml.nml.SpaceStructure method)

 	(neuroml.nml.nml.Species method)

 	(neuroml.nml.nml.SpecificCapacitance method)

 	(neuroml.nml.nml.Spike method)

 	(neuroml.nml.nml.SpikeArray method)

 	(neuroml.nml.nml.SpikeGenerator method)

 	(neuroml.nml.nml.SpikeGeneratorPoisson method)

 	(neuroml.nml.nml.SpikeGeneratorRandom method)

 	(neuroml.nml.nml.SpikeGeneratorRefPoisson method)

 	(neuroml.nml.nml.SpikeSourcePoisson method)

 	(neuroml.nml.nml.SpikeThresh method)

 	(neuroml.nml.nml.Standalone method)

 	(neuroml.nml.nml.StateVariable method)

 	(neuroml.nml.nml.SubTree method)

 	(neuroml.nml.nml.SynapticConnection method)

 	(neuroml.nml.nml.TauInfTransition method)

 	(neuroml.nml.nml.TimeDerivative method)

 	(neuroml.nml.nml.TimedSynapticInput method)

 	(neuroml.nml.nml.TransientPoissonFiringSynapse method)

 	(neuroml.nml.nml.UnstructuredLayout method)

 	(neuroml.nml.nml.VariableParameter method)

 	(neuroml.nml.nml.VoltageClamp method)

 	(neuroml.nml.nml.VoltageClampTriple method)

 	
 	InhomogeneousParameter (class in neuroml.nml.nml)

 	InhomogeneousValue (class in neuroml.nml.nml)

 	InitMembPotential (class in neuroml.nml.nml)

 	Input (class in neuroml.nml.nml)

 	InputList (class in neuroml.nml.nml)

 	InputW (class in neuroml.nml.nml)

 	Instance (class in neuroml.nml.nml)

 	InstanceRequirement (class in neuroml.nml.nml)

 	IntracellularProperties (class in neuroml.nml.nml)

 	IntracellularProperties2CaPools (class in neuroml.nml.nml)

 	IonChannel (class in neuroml.nml.nml)

 	IonChannelHH (class in neuroml.nml.nml)

 	IonChannelKS (class in neuroml.nml.nml)

 	IonChannelScalable (class in neuroml.nml.nml)

 	IonChannelVShift (class in neuroml.nml.nml)

 	is_valid_neuroml2() (in module neuroml.utils)

 	Izhikevich2007Cell (class in neuroml.nml.nml)

 	IzhikevichCell (class in neuroml.nml.nml)

L

 	
 	Layout (class in neuroml.nml.nml)

 	LEMS_Property (class in neuroml.nml.nml)

 	length (neuroml.nml.nml.Segment property)

 	LinearGradedSynapse (class in neuroml.nml.nml)

 	
 	load() (neuroml.loaders.ArrayMorphLoader class method)

 	(neuroml.loaders.NeuroMLHdf5Loader class method)

 	(neuroml.loaders.NeuroMLLoader class method)

 	load_swc_single() (neuroml.loaders.SWCLoader class method)

 	Location (class in neuroml.nml.nml)

M

 	
 	main() (in module neuroml.utils)

 	Member (class in neuroml.nml.nml)

 	MembraneProperties (class in neuroml.nml.nml)

 	MembraneProperties2CaPools (class in neuroml.nml.nml)

 	
 	
 module

 	neuroml.loaders

 	neuroml.utils

 	neuroml.writers

 	Morphology (class in neuroml.nml.nml)

N

 	
 	NamedDimensionalType (class in neuroml.nml.nml)

 	NamedDimensionalVariable (class in neuroml.nml.nml)

 	Network (class in neuroml.nml.nml)

 	neuro_lex_ids (neuroml.nml.nml.Cell attribute)

 	(neuroml.nml.nml.Cell2CaPools attribute)

 	
 neuroml.loaders

 	module

 	
 neuroml.utils

 	module

 	
 	
 neuroml.writers

 	module

 	NeuroMLDocument (class in neuroml.nml.nml)

 	NeuroMLHdf5Loader (class in neuroml.loaders)

 	NeuroMLHdf5Writer (class in neuroml.writers)

 	NeuroMLLoader (class in neuroml.loaders)

 	NeuroMLWriter (class in neuroml.writers)

 	num_segments (neuroml.nml.nml.Morphology property)

O

 	
 	OpenState (class in neuroml.nml.nml)

 	optimise_segment_group() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	
 	optimise_segment_groups() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

P

 	
 	Parameter (class in neuroml.nml.nml)

 	parentinfo() (neuroml.nml.generatedssupersuper.GeneratedsSuperSuper method)

 	(neuroml.nml.nml.AdExIaFCell method)

 	(neuroml.nml.nml.AlphaCondSynapse method)

 	(neuroml.nml.nml.AlphaCurrentSynapse method)

 	(neuroml.nml.nml.AlphaCurrSynapse method)

 	(neuroml.nml.nml.AlphaSynapse method)

 	(neuroml.nml.nml.Annotation method)

 	(neuroml.nml.nml.Base method)

 	(neuroml.nml.nml.BaseCell method)

 	(neuroml.nml.nml.BaseCellMembPotCap method)

 	(neuroml.nml.nml.BaseConductanceBasedSynapse method)

 	(neuroml.nml.nml.BaseConductanceBasedSynapseTwo method)

 	(neuroml.nml.nml.BaseConnection method)

 	(neuroml.nml.nml.BaseConnectionNewFormat method)

 	(neuroml.nml.nml.BaseConnectionOldFormat method)

 	(neuroml.nml.nml.BaseCurrentBasedSynapse method)

 	(neuroml.nml.nml.BaseNonNegativeIntegerId method)

 	(neuroml.nml.nml.BaseProjection method)

 	(neuroml.nml.nml.basePyNNCell method)

 	(neuroml.nml.nml.basePyNNIaFCell method)

 	(neuroml.nml.nml.basePyNNIaFCondCell method)

 	(neuroml.nml.nml.BasePynnSynapse method)

 	(neuroml.nml.nml.BaseSynapse method)

 	(neuroml.nml.nml.BaseVoltageDepSynapse method)

 	(neuroml.nml.nml.BaseWithoutId method)

 	(neuroml.nml.nml.BiophysicalProperties method)

 	(neuroml.nml.nml.BiophysicalProperties2CaPools method)

 	(neuroml.nml.nml.BlockingPlasticSynapse method)

 	(neuroml.nml.nml.BlockMechanism method)

 	(neuroml.nml.nml.Case method)

 	(neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	(neuroml.nml.nml.CellSet method)

 	(neuroml.nml.nml.ChannelDensity method)

 	(neuroml.nml.nml.ChannelDensityGHK method)

 	(neuroml.nml.nml.ChannelDensityGHK2 method)

 	(neuroml.nml.nml.ChannelDensityNernst method)

 	(neuroml.nml.nml.ChannelDensityNernstCa2 method)

 	(neuroml.nml.nml.ChannelDensityNonUniform method)

 	(neuroml.nml.nml.ChannelDensityNonUniformGHK method)

 	(neuroml.nml.nml.ChannelDensityNonUniformNernst method)

 	(neuroml.nml.nml.ChannelDensityVShift method)

 	(neuroml.nml.nml.ChannelPopulation method)

 	(neuroml.nml.nml.ClosedState method)

 	(neuroml.nml.nml.ComponentType method)

 	(neuroml.nml.nml.CompoundInput method)

 	(neuroml.nml.nml.CompoundInputDL method)

 	(neuroml.nml.nml.ConcentrationModel_D method)

 	(neuroml.nml.nml.ConditionalDerivedVariable method)

 	(neuroml.nml.nml.Connection method)

 	(neuroml.nml.nml.ConnectionWD method)

 	(neuroml.nml.nml.Constant method)

 	(neuroml.nml.nml.ContinuousConnection method)

 	(neuroml.nml.nml.ContinuousConnectionInstance method)

 	(neuroml.nml.nml.ContinuousConnectionInstanceW method)

 	(neuroml.nml.nml.ContinuousProjection method)

 	(neuroml.nml.nml.DecayingPoolConcentrationModel method)

 	(neuroml.nml.nml.DerivedVariable method)

 	(neuroml.nml.nml.DistalDetails method)

 	(neuroml.nml.nml.DoubleSynapse method)

 	(neuroml.nml.nml.Dynamics method)

 	(neuroml.nml.nml.EIF_cond_alpha_isfa_ista method)

 	(neuroml.nml.nml.EIF_cond_exp_isfa_ista method)

 	(neuroml.nml.nml.ElectricalConnection method)

 	(neuroml.nml.nml.ElectricalConnectionInstance method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW method)

 	(neuroml.nml.nml.ElectricalProjection method)

 	(neuroml.nml.nml.ExpCondSynapse method)

 	(neuroml.nml.nml.ExpCurrSynapse method)

 	(neuroml.nml.nml.ExplicitInput method)

 	(neuroml.nml.nml.ExpOneSynapse method)

 	(neuroml.nml.nml.Exposure method)

 	(neuroml.nml.nml.ExpThreeSynapse method)

 	(neuroml.nml.nml.ExpTwoSynapse method)

 	(neuroml.nml.nml.ExtracellularProperties method)

 	(neuroml.nml.nml.ExtracellularPropertiesLocal method)

 	(neuroml.nml.nml.FitzHughNagumo1969Cell method)

 	(neuroml.nml.nml.FitzHughNagumoCell method)

 	(neuroml.nml.nml.FixedFactorConcentrationModel method)

 	(neuroml.nml.nml.ForwardTransition method)

 	(neuroml.nml.nml.GapJunction method)

 	(neuroml.nml.nml.GateFractional method)

 	(neuroml.nml.nml.GateFractionalSubgate method)

 	(neuroml.nml.nml.GateHHInstantaneous method)

 	(neuroml.nml.nml.GateHHRates method)

 	(neuroml.nml.nml.GateHHRatesInf method)

 	(neuroml.nml.nml.GateHHRatesTau method)

 	(neuroml.nml.nml.GateHHRatesTauInf method)

 	(neuroml.nml.nml.GateHHTauInf method)

 	(neuroml.nml.nml.GateHHUndetermined method)

 	(neuroml.nml.nml.GateKS method)

 	(neuroml.nml.nml.GradedSynapse method)

 	(neuroml.nml.nml.GridLayout method)

 	(neuroml.nml.nml.HH_cond_exp method)

 	(neuroml.nml.nml.HHRate method)

 	(neuroml.nml.nml.HHTime method)

 	(neuroml.nml.nml.HHVariable method)

 	(neuroml.nml.nml.IafCell method)

 	(neuroml.nml.nml.IafRefCell method)

 	(neuroml.nml.nml.IafTauCell method)

 	(neuroml.nml.nml.IafTauRefCell method)

 	(neuroml.nml.nml.IF_cond_alpha method)

 	(neuroml.nml.nml.IF_cond_exp method)

 	(neuroml.nml.nml.IF_curr_alpha method)

 	(neuroml.nml.nml.IF_curr_exp method)

 	(neuroml.nml.nml.Include method)

 	(neuroml.nml.nml.IncludeType method)

 	(neuroml.nml.nml.InhomogeneousParameter method)

 	(neuroml.nml.nml.InhomogeneousValue method)

 	(neuroml.nml.nml.InitMembPotential method)

 	(neuroml.nml.nml.Input method)

 	(neuroml.nml.nml.InputList method)

 	(neuroml.nml.nml.InputW method)

 	(neuroml.nml.nml.Instance method)

 	(neuroml.nml.nml.InstanceRequirement method)

 	(neuroml.nml.nml.IntracellularProperties method)

 	(neuroml.nml.nml.IntracellularProperties2CaPools method)

 	(neuroml.nml.nml.IonChannel method)

 	(neuroml.nml.nml.IonChannelHH method)

 	(neuroml.nml.nml.IonChannelKS method)

 	(neuroml.nml.nml.IonChannelScalable method)

 	(neuroml.nml.nml.IonChannelVShift method)

 	(neuroml.nml.nml.Izhikevich2007Cell method)

 	(neuroml.nml.nml.IzhikevichCell method)

 	(neuroml.nml.nml.Layout method)

 	(neuroml.nml.nml.LEMS_Property method)

 	(neuroml.nml.nml.LinearGradedSynapse method)

 	(neuroml.nml.nml.Location method)

 	(neuroml.nml.nml.Member method)

 	(neuroml.nml.nml.MembraneProperties method)

 	(neuroml.nml.nml.MembraneProperties2CaPools method)

 	(neuroml.nml.nml.Morphology method)

 	(neuroml.nml.nml.NamedDimensionalType method)

 	(neuroml.nml.nml.NamedDimensionalVariable method)

 	(neuroml.nml.nml.Network method)

 	(neuroml.nml.nml.NeuroMLDocument method)

 	(neuroml.nml.nml.OpenState method)

 	(neuroml.nml.nml.Parameter method)

 	(neuroml.nml.nml.Path method)

 	(neuroml.nml.nml.PinskyRinzelCA3Cell method)

 	(neuroml.nml.nml.PlasticityMechanism method)

 	(neuroml.nml.nml.Point3DWithDiam method)

 	(neuroml.nml.nml.PoissonFiringSynapse method)

 	(neuroml.nml.nml.Population method)

 	(neuroml.nml.nml.Projection method)

 	(neuroml.nml.nml.Property method)

 	(neuroml.nml.nml.ProximalDetails method)

 	(neuroml.nml.nml.PulseGenerator method)

 	(neuroml.nml.nml.PulseGeneratorDL method)

 	(neuroml.nml.nml.Q10ConductanceScaling method)

 	(neuroml.nml.nml.Q10Settings method)

 	(neuroml.nml.nml.RampGenerator method)

 	(neuroml.nml.nml.RampGeneratorDL method)

 	(neuroml.nml.nml.RandomLayout method)

 	(neuroml.nml.nml.ReactionScheme method)

 	(neuroml.nml.nml.Region method)

 	(neuroml.nml.nml.Requirement method)

 	(neuroml.nml.nml.Resistivity method)

 	(neuroml.nml.nml.ReverseTransition method)

 	(neuroml.nml.nml.Segment method)

 	(neuroml.nml.nml.SegmentEndPoint method)

 	(neuroml.nml.nml.SegmentGroup method)

 	(neuroml.nml.nml.SegmentParent method)

 	(neuroml.nml.nml.SilentSynapse method)

 	(neuroml.nml.nml.SineGenerator method)

 	(neuroml.nml.nml.SineGeneratorDL method)

 	(neuroml.nml.nml.Space method)

 	(neuroml.nml.nml.SpaceStructure method)

 	(neuroml.nml.nml.Species method)

 	(neuroml.nml.nml.SpecificCapacitance method)

 	(neuroml.nml.nml.Spike method)

 	(neuroml.nml.nml.SpikeArray method)

 	(neuroml.nml.nml.SpikeGenerator method)

 	(neuroml.nml.nml.SpikeGeneratorPoisson method)

 	(neuroml.nml.nml.SpikeGeneratorRandom method)

 	(neuroml.nml.nml.SpikeGeneratorRefPoisson method)

 	(neuroml.nml.nml.SpikeSourcePoisson method)

 	(neuroml.nml.nml.SpikeThresh method)

 	(neuroml.nml.nml.Standalone method)

 	(neuroml.nml.nml.StateVariable method)

 	(neuroml.nml.nml.SubTree method)

 	(neuroml.nml.nml.SynapticConnection method)

 	(neuroml.nml.nml.TauInfTransition method)

 	(neuroml.nml.nml.TimeDerivative method)

 	(neuroml.nml.nml.TimedSynapticInput method)

 	(neuroml.nml.nml.TransientPoissonFiringSynapse method)

 	(neuroml.nml.nml.UnstructuredLayout method)

 	(neuroml.nml.nml.VariableParameter method)

 	(neuroml.nml.nml.VoltageClamp method)

 	(neuroml.nml.nml.VoltageClampTriple method)

 	
 	Path (class in neuroml.nml.nml)

 	PinskyRinzelCA3Cell (class in neuroml.nml.nml)

 	PlasticityMechanism (class in neuroml.nml.nml)

 	Point3DWithDiam (class in neuroml.nml.nml)

 	PoissonFiringSynapse (class in neuroml.nml.nml)

 	Population (class in neuroml.nml.nml)

 	print_() (in module neuroml.loaders)

 	print_messages() (neuroml.nml.generatedscollector.GdsCollector method)

 	print_summary() (in module neuroml.utils)

 	Projection (class in neuroml.nml.nml)

 	Property (class in neuroml.nml.nml)

 	ProximalDetails (class in neuroml.nml.nml)

 	PulseGenerator (class in neuroml.nml.nml)

 	PulseGeneratorDL (class in neuroml.nml.nml)

Q

 	
 	Q10ConductanceScaling (class in neuroml.nml.nml)

 	
 	Q10Settings (class in neuroml.nml.nml)

R

 	
 	RampGenerator (class in neuroml.nml.nml)

 	RampGeneratorDL (class in neuroml.nml.nml)

 	RandomLayout (class in neuroml.nml.nml)

 	ReactionScheme (class in neuroml.nml.nml)

 	read_neuroml2_file() (in module neuroml.loaders)

 	read_neuroml2_string() (in module neuroml.loaders)

 	
 	Region (class in neuroml.nml.nml)

 	reorder_segment_groups() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	Requirement (class in neuroml.nml.nml)

 	Resistivity (class in neuroml.nml.nml)

 	ReverseTransition (class in neuroml.nml.nml)

S

 	
 	Segment (class in neuroml.nml.nml)

 	SegmentEndPoint (class in neuroml.nml.nml)

 	SegmentGroup (class in neuroml.nml.nml)

 	SegmentParent (class in neuroml.nml.nml)

 	set_init_memb_potential() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	set_resistivity() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	set_specific_capacitance() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	set_spike_thresh() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	setup_nml_cell() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	SilentSynapse (class in neuroml.nml.nml)

 	SineGenerator (class in neuroml.nml.nml)

 	SineGeneratorDL (class in neuroml.nml.nml)

 	Space (class in neuroml.nml.nml)

 	SpaceStructure (class in neuroml.nml.nml)

 	
 	Species (class in neuroml.nml.nml)

 	SpecificCapacitance (class in neuroml.nml.nml)

 	Spike (class in neuroml.nml.nml)

 	SpikeArray (class in neuroml.nml.nml)

 	SpikeGenerator (class in neuroml.nml.nml)

 	SpikeGeneratorPoisson (class in neuroml.nml.nml)

 	SpikeGeneratorRandom (class in neuroml.nml.nml)

 	SpikeGeneratorRefPoisson (class in neuroml.nml.nml)

 	SpikeSourcePoisson (class in neuroml.nml.nml)

 	SpikeThresh (class in neuroml.nml.nml)

 	Standalone (class in neuroml.nml.nml)

 	StateVariable (class in neuroml.nml.nml)

 	SubTree (class in neuroml.nml.nml)

 	summary() (neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	(neuroml.nml.nml.NeuroMLDocument method)

 	surface_area (neuroml.nml.nml.Segment property)

 	SWCLoader (class in neuroml.loaders)

 	SynapticConnection (class in neuroml.nml.nml)

T

 	
 	TauInfTransition (class in neuroml.nml.nml)

 	TimeDerivative (class in neuroml.nml.nml)

 	
 	TimedSynapticInput (class in neuroml.nml.nml)

 	TransientPoissonFiringSynapse (class in neuroml.nml.nml)

U

 	
 	UnstructuredLayout (class in neuroml.nml.nml)

V

 	
 	validate() (neuroml.nml.generatedssupersuper.GeneratedsSuperSuper method)

 	(neuroml.nml.nml.AdExIaFCell method)

 	(neuroml.nml.nml.AlphaCondSynapse method)

 	(neuroml.nml.nml.AlphaCurrentSynapse method)

 	(neuroml.nml.nml.AlphaCurrSynapse method)

 	(neuroml.nml.nml.AlphaSynapse method)

 	(neuroml.nml.nml.Annotation method)

 	(neuroml.nml.nml.Base method)

 	(neuroml.nml.nml.BaseCell method)

 	(neuroml.nml.nml.BaseCellMembPotCap method)

 	(neuroml.nml.nml.BaseConductanceBasedSynapse method)

 	(neuroml.nml.nml.BaseConductanceBasedSynapseTwo method)

 	(neuroml.nml.nml.BaseConnection method)

 	(neuroml.nml.nml.BaseConnectionNewFormat method)

 	(neuroml.nml.nml.BaseConnectionOldFormat method)

 	(neuroml.nml.nml.BaseCurrentBasedSynapse method)

 	(neuroml.nml.nml.BaseNonNegativeIntegerId method)

 	(neuroml.nml.nml.BaseProjection method)

 	(neuroml.nml.nml.basePyNNCell method)

 	(neuroml.nml.nml.basePyNNIaFCell method)

 	(neuroml.nml.nml.basePyNNIaFCondCell method)

 	(neuroml.nml.nml.BasePynnSynapse method)

 	(neuroml.nml.nml.BaseSynapse method)

 	(neuroml.nml.nml.BaseVoltageDepSynapse method)

 	(neuroml.nml.nml.BaseWithoutId method)

 	(neuroml.nml.nml.BiophysicalProperties method)

 	(neuroml.nml.nml.BiophysicalProperties2CaPools method)

 	(neuroml.nml.nml.BlockingPlasticSynapse method)

 	(neuroml.nml.nml.BlockMechanism method)

 	(neuroml.nml.nml.Case method)

 	(neuroml.nml.nml.Cell method)

 	(neuroml.nml.nml.Cell2CaPools method)

 	(neuroml.nml.nml.CellSet method)

 	(neuroml.nml.nml.ChannelDensity method)

 	(neuroml.nml.nml.ChannelDensityGHK method)

 	(neuroml.nml.nml.ChannelDensityGHK2 method)

 	(neuroml.nml.nml.ChannelDensityNernst method)

 	(neuroml.nml.nml.ChannelDensityNernstCa2 method)

 	(neuroml.nml.nml.ChannelDensityNonUniform method)

 	(neuroml.nml.nml.ChannelDensityNonUniformGHK method)

 	(neuroml.nml.nml.ChannelDensityNonUniformNernst method)

 	(neuroml.nml.nml.ChannelDensityVShift method)

 	(neuroml.nml.nml.ChannelPopulation method)

 	(neuroml.nml.nml.ClosedState method)

 	(neuroml.nml.nml.ComponentType method)

 	(neuroml.nml.nml.CompoundInput method)

 	(neuroml.nml.nml.CompoundInputDL method)

 	(neuroml.nml.nml.ConcentrationModel_D method)

 	(neuroml.nml.nml.ConditionalDerivedVariable method)

 	(neuroml.nml.nml.Connection method)

 	(neuroml.nml.nml.ConnectionWD method)

 	(neuroml.nml.nml.Constant method)

 	(neuroml.nml.nml.ContinuousConnection method)

 	(neuroml.nml.nml.ContinuousConnectionInstance method)

 	(neuroml.nml.nml.ContinuousConnectionInstanceW method)

 	(neuroml.nml.nml.ContinuousProjection method)

 	(neuroml.nml.nml.DecayingPoolConcentrationModel method)

 	(neuroml.nml.nml.DerivedVariable method)

 	(neuroml.nml.nml.DistalDetails method)

 	(neuroml.nml.nml.DoubleSynapse method)

 	(neuroml.nml.nml.Dynamics method)

 	(neuroml.nml.nml.EIF_cond_alpha_isfa_ista method)

 	(neuroml.nml.nml.EIF_cond_exp_isfa_ista method)

 	(neuroml.nml.nml.ElectricalConnection method)

 	(neuroml.nml.nml.ElectricalConnectionInstance method)

 	(neuroml.nml.nml.ElectricalConnectionInstanceW method)

 	(neuroml.nml.nml.ElectricalProjection method)

 	(neuroml.nml.nml.ExpCondSynapse method)

 	(neuroml.nml.nml.ExpCurrSynapse method)

 	(neuroml.nml.nml.ExplicitInput method)

 	(neuroml.nml.nml.ExpOneSynapse method)

 	(neuroml.nml.nml.Exposure method)

 	(neuroml.nml.nml.ExpThreeSynapse method)

 	(neuroml.nml.nml.ExpTwoSynapse method)

 	(neuroml.nml.nml.ExtracellularProperties method)

 	(neuroml.nml.nml.ExtracellularPropertiesLocal method)

 	(neuroml.nml.nml.FitzHughNagumo1969Cell method)

 	(neuroml.nml.nml.FitzHughNagumoCell method)

 	(neuroml.nml.nml.FixedFactorConcentrationModel method)

 	(neuroml.nml.nml.ForwardTransition method)

 	(neuroml.nml.nml.GapJunction method)

 	(neuroml.nml.nml.GateFractional method)

 	(neuroml.nml.nml.GateFractionalSubgate method)

 	(neuroml.nml.nml.GateHHInstantaneous method)

 	(neuroml.nml.nml.GateHHRates method)

 	(neuroml.nml.nml.GateHHRatesInf method)

 	(neuroml.nml.nml.GateHHRatesTau method)

 	(neuroml.nml.nml.GateHHRatesTauInf method)

 	(neuroml.nml.nml.GateHHTauInf method)

 	(neuroml.nml.nml.GateHHUndetermined method)

 	(neuroml.nml.nml.GateKS method)

 	(neuroml.nml.nml.GradedSynapse method)

 	(neuroml.nml.nml.GridLayout method)

 	(neuroml.nml.nml.HH_cond_exp method)

 	(neuroml.nml.nml.HHRate method)

 	(neuroml.nml.nml.HHTime method)

 	(neuroml.nml.nml.HHVariable method)

 	(neuroml.nml.nml.IafCell method)

 	(neuroml.nml.nml.IafRefCell method)

 	(neuroml.nml.nml.IafTauCell method)

 	(neuroml.nml.nml.IafTauRefCell method)

 	(neuroml.nml.nml.IF_cond_alpha method)

 	(neuroml.nml.nml.IF_cond_exp method)

 	(neuroml.nml.nml.IF_curr_alpha method)

 	(neuroml.nml.nml.IF_curr_exp method)

 	(neuroml.nml.nml.Include method)

 	(neuroml.nml.nml.IncludeType method)

 	(neuroml.nml.nml.InhomogeneousParameter method)

 	(neuroml.nml.nml.InhomogeneousValue method)

 	(neuroml.nml.nml.InitMembPotential method)

 	(neuroml.nml.nml.Input method)

 	(neuroml.nml.nml.InputList method)

 	(neuroml.nml.nml.InputW method)

 	(neuroml.nml.nml.Instance method)

 	(neuroml.nml.nml.InstanceRequirement method)

 	(neuroml.nml.nml.IntracellularProperties method)

 	(neuroml.nml.nml.IntracellularProperties2CaPools method)

 	(neuroml.nml.nml.IonChannel method)

 	(neuroml.nml.nml.IonChannelHH method)

 	(neuroml.nml.nml.IonChannelKS method)

 	(neuroml.nml.nml.IonChannelScalable method)

 	(neuroml.nml.nml.IonChannelVShift method)

 	(neuroml.nml.nml.Izhikevich2007Cell method)

 	(neuroml.nml.nml.IzhikevichCell method)

 	(neuroml.nml.nml.Layout method)

 	(neuroml.nml.nml.LEMS_Property method)

 	(neuroml.nml.nml.LinearGradedSynapse method)

 	(neuroml.nml.nml.Location method)

 	(neuroml.nml.nml.Member method)

 	(neuroml.nml.nml.MembraneProperties method)

 	(neuroml.nml.nml.MembraneProperties2CaPools method)

 	(neuroml.nml.nml.Morphology method)

 	(neuroml.nml.nml.NamedDimensionalType method)

 	(neuroml.nml.nml.NamedDimensionalVariable method)

 	(neuroml.nml.nml.Network method)

 	(neuroml.nml.nml.NeuroMLDocument method)

 	(neuroml.nml.nml.OpenState method)

 	(neuroml.nml.nml.Parameter method)

 	(neuroml.nml.nml.Path method)

 	(neuroml.nml.nml.PinskyRinzelCA3Cell method)

 	(neuroml.nml.nml.PlasticityMechanism method)

 	(neuroml.nml.nml.Point3DWithDiam method)

 	(neuroml.nml.nml.PoissonFiringSynapse method)

 	(neuroml.nml.nml.Population method)

 	(neuroml.nml.nml.Projection method)

 	(neuroml.nml.nml.Property method)

 	(neuroml.nml.nml.ProximalDetails method)

 	(neuroml.nml.nml.PulseGenerator method)

 	(neuroml.nml.nml.PulseGeneratorDL method)

 	(neuroml.nml.nml.Q10ConductanceScaling method)

 	(neuroml.nml.nml.Q10Settings method)

 	(neuroml.nml.nml.RampGenerator method)

 	(neuroml.nml.nml.RampGeneratorDL method)

 	(neuroml.nml.nml.RandomLayout method)

 	(neuroml.nml.nml.ReactionScheme method)

 	(neuroml.nml.nml.Region method)

 	(neuroml.nml.nml.Requirement method)

 	(neuroml.nml.nml.Resistivity method)

 	(neuroml.nml.nml.ReverseTransition method)

 	(neuroml.nml.nml.Segment method)

 	(neuroml.nml.nml.SegmentEndPoint method)

 	(neuroml.nml.nml.SegmentGroup method)

 	(neuroml.nml.nml.SegmentParent method)

 	(neuroml.nml.nml.SilentSynapse method)

 	(neuroml.nml.nml.SineGenerator method)

 	(neuroml.nml.nml.SineGeneratorDL method)

 	(neuroml.nml.nml.Space method)

 	(neuroml.nml.nml.SpaceStructure method)

 	(neuroml.nml.nml.Species method)

 	(neuroml.nml.nml.SpecificCapacitance method)

 	(neuroml.nml.nml.Spike method)

 	(neuroml.nml.nml.SpikeArray method)

 	(neuroml.nml.nml.SpikeGenerator method)

 	(neuroml.nml.nml.SpikeGeneratorPoisson method)

 	(neuroml.nml.nml.SpikeGeneratorRandom method)

 	(neuroml.nml.nml.SpikeGeneratorRefPoisson method)

 	(neuroml.nml.nml.SpikeSourcePoisson method)

 	(neuroml.nml.nml.SpikeThresh method)

 	(neuroml.nml.nml.Standalone method)

 	(neuroml.nml.nml.StateVariable method)

 	(neuroml.nml.nml.SubTree method)

 	(neuroml.nml.nml.SynapticConnection method)

 	(neuroml.nml.nml.TauInfTransition method)

 	(neuroml.nml.nml.TimeDerivative method)

 	(neuroml.nml.nml.TimedSynapticInput method)

 	(neuroml.nml.nml.TransientPoissonFiringSynapse method)

 	(neuroml.nml.nml.UnstructuredLayout method)

 	(neuroml.nml.nml.VariableParameter method)

 	(neuroml.nml.nml.VoltageClamp method)

 	(neuroml.nml.nml.VoltageClampTriple method)

 	
 	validate_neuroml2() (in module neuroml.utils)

 	validate_Nml2Quantity_resistivity() (neuroml.nml.nml.Resistivity method)

 	validate_Nml2Quantity_resistivity_patterns_ (neuroml.nml.nml.Resistivity attribute)

 	VariableParameter (class in neuroml.nml.nml)

 	VoltageClamp (class in neuroml.nml.nml)

 	VoltageClampTriple (class in neuroml.nml.nml)

 	volume (neuroml.nml.nml.Segment property)

W

 	
 	write() (neuroml.writers.ArrayMorphWriter class method)

 	(neuroml.writers.NeuroMLHdf5Writer class method)

 	(neuroml.writers.NeuroMLWriter class method)

 	
 	write_messages() (neuroml.nml.generatedscollector.GdsCollector method)

 _static/neuroml_logo.png
~~§%{NeuroNL]

_static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 libNeuroML: documentation

 		
 User guide

 		
 Introduction

 		
 NeuroML

 		
 Serialisations

 		
 Installation

 		
 Using Pip

 		
 On Fedora based systems

 		
 Install from source

 		
 Run an example

 		
 Unit tests

 		
 API documentation

 		
 nml Module (NeuroML Core classes)

 		
 loaders Module

 		
 writers Module

 		
 utils Module

 		
 arraymorph Module

 		
 Examples

 		
 Creating a NeuroML morphology

 		
 Loading and modifying a file

 		
 Building a network

 		
 Building a 3D network

 		
 Ion channels

 		
 PyNN models

 		
 Synapses

 		
 Working with arraymorphs

 		
 Working with Izhikevich Cells

 		
 References

 		
 Contributing

 		
 How to contribute

 		
 Setting up

 		
 Sync with upstream

 		
 Working locally on a dedicated branch

 		
 Continuous integration

 		
 Release process

 		
 Regenerating documentation

 		
 Implementation of XML bindings for libNeuroML

 		
 Correct naming conventions

 		
 Addition of helper methods

 		
 Generation of bindings

 		
 Multicompartmental Python API Meeting

 		
 Organisation

 		
 Minutes

 		
 Nodes, Segments and Sections

 		
 Nodes

 		
 Segments

 		
 Sections

 		
 Issues

