
libNeuroML Documentation

libNeuroML authors and contributors

Oct 17, 2022

CONTENTS

1 User guide 3
1.1 Introduction . 3
1.2 Installation . 3
1.3 API documentation . 5
1.4 Examples . 586
1.5 References . 600

2 Contributing 601
2.1 How to contribute . 601
2.2 Regenerating documentation . 603
2.3 Implementation of XML bindings for libNeuroML . 603
2.4 Multicompartmental Python API Meeting . 604
2.5 Nodes, Segments and Sections . 607

3 Indices and tables 611

Bibliography 613

Python Module Index 615

Index 617

i

ii

libNeuroML Documentation

Welcome to the libNeuroML documentation. Here you will find information on installing, using, and contributing
to libNeuroML. For more information on NeuroML standard, other tools in the NeuroML eco-system, the NeuroML
community and how to get in touch with us, please see the documentation at https://docs.neuroml.org.

CONTENTS 1

https://docs.neuroml.org

libNeuroML Documentation

2 CONTENTS

CHAPTER

ONE

USER GUIDE

1.1 Introduction

This package provides Python libNeuroML, for working with neuronal models specified in NeuroML 2.

Warning: libNeuroML targets NeuroML v2.0

libNeuroML targets NeuroML v2.0, which is described in Cannon et al, 2014). NeuroML v1.8.1 (Gleeson et al.
2010) is now deprecated and not supported by libNeuroML.

For a detailed description of libNeuroML see Vella et al. [VCC+14]. Please cite the paper if you use libNeuroML.

1.1.1 NeuroML

NeuroML provides an object model for describing neuronal morphologies, ion channels, synapses and 3D network
structure. For more information on NeuroML 2 and LEMS please see the NeuroML documentation.

1.1.2 Serialisations

The XML serialisation will be the “natural” serialisation and will follow closely the NeuroML object model. The
format of the XML will be specified by the XML Schema definition (XSD file).

Other serialisations have also been developed (HDF5, SWC). Please see Vella et al. [VCC+14] for more details.

1.2 Installation

1.2.1 Using Pip

On most systems with a Python installation, libNeuroML can be installed using the default Python package manager,
Pip:

pip install libNeuroML

It is recommended to use a virtual environment when installing Python packages using pip to prevent these from
conflicting with other system libraries.

This will support the default XML serialization. To install all of requirements to include the other serialisations, use

3

http://docs.neuroml.org
http://docs.neuroml.org
http://journal.frontiersin.org/Journal/10.3389/fninf.2014.00079/abstract
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000815
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000815
https://docs.neuroml.org/Userdocs/NeuroMLv2.html
https://docs.python.org/3/tutorial/venv.html

libNeuroML Documentation

On Ubuntu based systems
sudo apt-get install libhdf5-dev
pip install libNeuroML[full]

The apt line is required at time of writing because PyTables’ wheels for python 3.7 depend on the system libhdf5.

1.2.2 On Fedora based systems

On Fedora Linux systems, the NeuroFedora community provides libNeuroML in the standard Fedora repos and can be
installed using the following commands:

sudo dnf install python3-libNeuroML

1.2.3 Install from source

You can clone the GitHub repository and also build libNeuroML from the sources. For this, you will need git:

git clone git://github.com/NeuralEnsemble/libNeuroML.git
cd libNeuroML

More details about the git repository and making your own branch/fork are here. To build and install libNeuroML, you
can use the standard install method for Python packages (preferably in a virtual environment):

python setup.py install

To use the latest development version of libNeuroML, switch to the development branch:

git checkout development
sudo python setup.py install

1.2.4 Run an example

Some sample scripts are included in neuroml/examples, e.g. :

cd neuroml/examples
python build_network.py

The standard examples can also be found Examples.

1.2.5 Unit tests

To run unit tests cd to the directory neuroml/test and use the Python unittest module discover method:

cd neuroml/test/
python -m unittest discover

If all tests passed correctly, your output should look something like this:

4 Chapter 1. User guide

https://getfedora.org
https://neuro.fedoraproject.org
https://src.fedoraproject.org/rpms/python-libNeuroML
https://github.com/NeuralEnsemble/libNeuroML/
https://git-scm.com
how_to_contribute.html

libNeuroML Documentation

.......
--
Ran 55 tests in 40.1s

OK

You can also use PyTest to run tests.

pip install pytest
pytest -v --strict -W all

1.3 API documentation

The libNeuroML API includes the core NeuroML classes and various utilities. You can find information on these in
the pages below.

1.3.1 nml Module (NeuroML Core classes)

These NeuroML core classes are Python representations of the Component Types defined in the NeuroML standard .
These can be used to build NeuroML models in Python, and these models can then be exported to the standard XML
NeuroML representation. These core classes also contain some utility functions to make it easier for users to carry out
common tasks.

Each NeuroML Component Type is represented here as a Python class. Due to implementation limitations, whereas
NeuroML Component Types use lower camel case naming, the Python classes here use upper camel case naming. So,
for example, the adExIaFCell Component Type in the NeuroML schema becomes the AdExIaFCell class here, and
expTwoSynapse becomes the ExpTwoSynapse class.

The child and children elements that NeuroML Component Types can have are represented in the Python classes
as variables. The variable names, to distinguish them from class names, use snake case. So for example, the cell
NeuroML Component Type has a corresponding Cell Python class here. The biophysicalProperties child Com-
ponent Type in cell is represented as the biophysical_properties list variable in the Cell Python class. The
class signatures list all the child/children elements and text fields that the corresponding Component Type possesses.
To again use the Cell class as an example, the construction signature is this:

class neuroml.nml.nml.Cell(neuro_lex_id=None, id=None, metaid=None, notes=None,␣
→˓properties=None, annotation=None, morphology_attr=None, biophysical_properties_
→˓attr=None, morphology=None, biophysical_properties=None, extensiontype_=None, **kwargs_
→˓)

As can be seen here, it includes both the biophysical_properties and morphology child elements as variables.

Please see the examples in the NeuroML documentation to see usage examples of libNeuroML. Please also note that
this module is also included in the top level of the neuroml package, so you can use these classes by importing neuroml:

from neuroml import AdExIaFCell

1.3. API documentation 5

https://docs.neuroml.org/Userdocs/NeuroMLv2.html
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Snake_case
https://docs.neuroml.org/Userdocs/GettingStarted.html

libNeuroML Documentation

List of Component classes

This documentation is auto-generated from the NeuroML schema. In case of issues, please refer to the schema docu-
mentation for clarifications. If the schema documentation does not resolve the issue, please contact us.

GeneratedsSuperSuper

class neuroml.nml.generatedssupersuper.GeneratedsSuperSuper

Bases: object

Super class for GeneratedsSuper.

Any bits that must go into every libNeuroML class should go here.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

6 Chapter 1. User guide

https://docs.neuroml.org/Userdocs/NeuroMLv2.html
https://docs.neuroml.org/NeuroMLOrg/CommunicationChannels.html

libNeuroML Documentation

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

1.3. API documentation 7

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

GdsCollector

class neuroml.nml.generatedscollector.GdsCollector(messages=None)
Bases: object

add_message(msg)

clear_messages()

get_messages()

8 Chapter 1. User guide

libNeuroML Documentation

print_messages()

write_messages(outstream)

AdExIaFCell

class neuroml.nml.nml.AdExIaFCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, C: a
Nml2Quantity_capacitance (required) = None, g_l: a
Nml2Quantity_conductance (required) = None, EL: a
Nml2Quantity_voltage (required) = None, reset: a
Nml2Quantity_voltage (required) = None, VT: a Nml2Quantity_voltage
(required) = None, thresh: a Nml2Quantity_voltage (required) = None,
del_t: a Nml2Quantity_voltage (required) = None, tauw: a
Nml2Quantity_time (required) = None, refract: a Nml2Quantity_time
(required) = None, a: a Nml2Quantity_conductance (required) = None,
b: a Nml2Quantity_current (required) = None, gds_collector_=None,
**kwargs_)

Bases: BaseCellMembPotCap

AdExIaFCell – Model based on Brette R and Gerstner W (2005) Adaptive Exponential Integrate-and-Fire Model
as an Effective Description of Neuronal Activity. J Neurophysiol 94:3637-3642

Parameters

• gL (conductance) –

• EL (voltage) –

• VT (voltage) –

• thresh (voltage) –

• reset (voltage) –

• delT (voltage) –

• tauw (time) –

• refract (time) –

• a (conductance) –

• b (current) –

• C (capacitance) – Total capacitance of the cell membrane

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

1.3. API documentation 9

libNeuroML Documentation

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child

10 Chapter 1. User guide

libNeuroML Documentation

elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

1.3. API documentation 11

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

AlphaCondSynapse

class neuroml.nml.nml.AlphaCondSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, neuro_lex_id: a NeuroLexId (optional) =
None, tau_syn: a float (required) = None, e_rev: a float (required)
= None, gds_collector_=None, **kwargs_)

Bases: BasePynnSynapse

AlphaCondSynapse – Alpha synapse: rise time and decay time are both tau_syn. Conductance based synapse.

Parameters

• e_rev (none) –

• tau_syn (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

12 Chapter 1. User guide

libNeuroML Documentation

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

1.3. API documentation 13

libNeuroML Documentation

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

14 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

AlphaCurrSynapse

class neuroml.nml.nml.AlphaCurrSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, neuro_lex_id: a NeuroLexId (optional) =
None, tau_syn: a float (required) = None, gds_collector_=None,
**kwargs_)

Bases: BasePynnSynapse

AlphaCurrSynapse – Alpha synapse: rise time and decay time are both tau_syn. Current based synapse.

Parameters
tau_syn (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

1.3. API documentation 15

libNeuroML Documentation

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

16 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 17

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

AlphaCurrentSynapse

class neuroml.nml.nml.AlphaCurrentSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, neuro_lex_id: a NeuroLexId (optional) =
None, tau: a Nml2Quantity_time (required) = None, ibase: a
Nml2Quantity_current (required) = None,
gds_collector_=None, **kwargs_)

Bases: BaseCurrentBasedSynapse

AlphaCurrentSynapse – Alpha current synapse: rise time and decay time are both tau.

Parameters

• tau (time) – Time course for rise and decay

• ibase (current) – Baseline current increase after receiving a spike

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

18 Chapter 1. User guide

libNeuroML Documentation

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,

1.3. API documentation 19

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

20 Chapter 1. User guide

libNeuroML Documentation

AlphaSynapse

class neuroml.nml.nml.AlphaSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, gbase: a
Nml2Quantity_conductance (required) = None, erev: a
Nml2Quantity_voltage (required) = None, tau: a Nml2Quantity_time
(required) = None, gds_collector_=None, **kwargs_)

Bases: BaseConductanceBasedSynapse

AlphaSynapse – Ohmic synapse model where rise time and decay time are both tau. Max conductance reached
during this time (assuming zero conductance before) is gbase * weight.

Parameters

• tau (time) – Time course of rise/decay

• gbase (conductance) – Baseline conductance, generally the maximum conductance fol-
lowing a single spike

• erev (voltage) – Reversal potential of the synapse

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

1.3. API documentation 21

libNeuroML Documentation

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

22 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 23

libNeuroML Documentation

Annotation

class neuroml.nml.nml.Annotation(anytypeobjs_=None, gds_collector_=None, **kwargs_)
Bases: BaseWithoutId

Annotation – A structured annotation containing metadata, specifically RDF or property elements

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

24 Chapter 1. User guide

libNeuroML Documentation

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

1.3. API documentation 25

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Base

class neuroml.nml.nml.Base(id: a NmlId (required) = None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: BaseWithoutId

Base – Anything which can have a unique (within its parent) id of the form NmlId (spaceless combination of
letters, numbers and underscore).

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

26 Chapter 1. User guide

libNeuroML Documentation

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child

1.3. API documentation 27

libNeuroML Documentation

elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

28 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

BaseCell

class neuroml.nml.nml.BaseCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes:
a string (optional) = None, properties: list of Property(s) (optional) = None,
annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId
(optional) = None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: Standalone

BaseCell – Base type of any cell (e. g. point neuron like izhikevich2007Cell , or a morphologically detailed
Cell with segment s) which can be used in a population

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

1.3. API documentation 29

libNeuroML Documentation

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

30 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 31

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

BaseCellMembPotCap

class neuroml.nml.nml.BaseCellMembPotCap(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, neuro_lex_id: a NeuroLexId (optional) =
None, C: a Nml2Quantity_capacitance (required) = None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: BaseCell

BaseCellMembPotCap – Any cell with a membrane potential v with voltage units and a membrane capacitance
C. Also defines exposed value iSyn for current due to external synapses and iMemb for total transmembrane
current (usually channel currents plus iSyn)

Parameters
C (capacitance) – Total capacitance of the cell membrane

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

32 Chapter 1. User guide

libNeuroML Documentation

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

1.3. API documentation 33

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

34 Chapter 1. User guide

libNeuroML Documentation

BaseConductanceBasedSynapse

class neuroml.nml.nml.BaseConductanceBasedSynapse(id: a NmlId (required) = None, metaid: a MetaId
(optional) = None, notes: a string (optional) =
None, properties: list of Property(s) (optional) =
None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None,
gbase: a Nml2Quantity_conductance (required) =
None, erev: a Nml2Quantity_voltage (required) =
None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: BaseVoltageDepSynapse

BaseConductanceBasedSynapse – Synapse model which exposes a conductance g in addition to producing a
current. Not necessarily ohmic!! cno_0000027

Parameters

• gbase (conductance) – Baseline conductance, generally the maximum conductance fol-
lowing a single spike

• erev (voltage) – Reversal potential of the synapse

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

1.3. API documentation 35

libNeuroML Documentation

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

36 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 37

libNeuroML Documentation

BaseConductanceBasedSynapseTwo

class neuroml.nml.nml.BaseConductanceBasedSynapseTwo(id: a NmlId (required) = None, metaid: a
MetaId (optional) = None, notes: a string
(optional) = None, properties: list of
Property(s) (optional) = None, annotation: a
Annotation (optional) = None, neuro_lex_id: a
NeuroLexId (optional) = None, gbase1: a
Nml2Quantity_conductance (required) = None,
gbase2: a Nml2Quantity_conductance
(required) = None, erev: a
Nml2Quantity_voltage (required) = None,
extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: BaseVoltageDepSynapse

BaseConductanceBasedSynapseTwo – Synapse model suited for a sum of two expTwoSynapses which exposes
a conductance g in addition to producing a current. Not necessarily ohmic!! cno_0000027

Parameters

• gbase1 (conductance) – Baseline conductance 1

• gbase2 (conductance) – Baseline conductance 2

• erev (voltage) – Reversal potential of the synapse

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

38 Chapter 1. User guide

libNeuroML Documentation

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

1.3. API documentation 39

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

40 Chapter 1. User guide

libNeuroML Documentation

Raises
ValueError – if component is invalid

BaseConnection

class neuroml.nml.nml.BaseConnection(id: a NmlId (required) = None, neuro_lex_id: a NeuroLexId
(optional) = None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: BaseNonNegativeIntegerId

BaseConnection – Base of all synaptic connections (chemical/electrical/analog, etc.) inside projections

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

1.3. API documentation 41

libNeuroML Documentation

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

42 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

BaseConnectionNewFormat

class neuroml.nml.nml.BaseConnectionNewFormat(id: a NmlId (required) = None, neuro_lex_id: a
NeuroLexId (optional) = None, pre_cell: a string
(required) = None, pre_segment: a NonNegativeInteger
(optional) = '0', pre_fraction_along: a ZeroToOne
(optional) = '0.5', post_cell: a string (required) = None,
post_segment: a NonNegativeInteger (optional) = '0',
post_fraction_along: a ZeroToOne (optional) = '0.5',
extensiontype_=None, gds_collector_=None,
**kwargs_)

1.3. API documentation 43

libNeuroML Documentation

Bases: BaseConnection

BaseConnectionNewFormat – Base of all synaptic connections with preCell, postSegment, etc. See BaseCon-
nectionOldFormat

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

44 Chapter 1. User guide

libNeuroML Documentation

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

1.3. API documentation 45

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

BaseConnectionOldFormat

class neuroml.nml.nml.BaseConnectionOldFormat(id: a NmlId (required) = None, neuro_lex_id: a
NeuroLexId (optional) = None, pre_cell_id: a string
(required) = None, pre_segment_id: a
NonNegativeInteger (optional) = '0', pre_fraction_along:
a ZeroToOne (optional) = '0.5', post_cell_id: a string
(required) = None, post_segment_id: a
NonNegativeInteger (optional) = '0',
post_fraction_along: a ZeroToOne (optional) = '0.5',
extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: BaseConnection

BaseConnectionOldFormat – Base of all synaptic connections with preCellId, postSegmentId, etc. Note: this is
not the best name for these attributes, since Id is superfluous, hence BaseConnectionNewFormat

46 Chapter 1. User guide

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

1.3. API documentation 47

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

48 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

BaseCurrentBasedSynapse

class neuroml.nml.nml.BaseCurrentBasedSynapse(id: a NmlId (required) = None, metaid: a MetaId
(optional) = None, notes: a string (optional) = None,
properties: list of Property(s) (optional) = None,
annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None,
extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: BaseSynapse

BaseCurrentBasedSynapse – Synapse model which produces a synaptic current.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

1.3. API documentation 49

libNeuroML Documentation

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child

50 Chapter 1. User guide

libNeuroML Documentation

elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

1.3. API documentation 51

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

BaseNonNegativeIntegerId

class neuroml.nml.nml.BaseNonNegativeIntegerId(id: a NmlId (required) = None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

BaseNonNegativeIntegerId – Anything which can have a unique (within its parent) id, which must be an integer
zero or greater.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

52 Chapter 1. User guide

libNeuroML Documentation

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

1.3. API documentation 53

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

54 Chapter 1. User guide

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

BaseProjection

class neuroml.nml.nml.BaseProjection(id: a NmlId (required) = None, presynaptic_population: a NmlId
(required) = None, postsynaptic_population: a NmlId (required) =
None, extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: Base

BaseProjection – Base for projection (set of synaptic connections) between two populations

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

1.3. API documentation 55

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

56 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 57

libNeuroML Documentation

BasePynnSynapse

class neuroml.nml.nml.BasePynnSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation (optional)
= None, neuro_lex_id: a NeuroLexId (optional) = None, tau_syn:
a float (required) = None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: BaseSynapse

BasePynnSynapse – Base type for all PyNN synapses. Note, the current I produced is dimensionless, but it
requires a membrane potential v with dimension voltage

Parameters
tau_syn (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

58 Chapter 1. User guide

libNeuroML Documentation

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

1.3. API documentation 59

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

60 Chapter 1. User guide

libNeuroML Documentation

BaseSynapse

class neuroml.nml.nml.BaseSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: Standalone

BaseSynapse – Base type for all synapses, i. e. ComponentTypes which produce a current (dimension current)
and change Dynamics in response to an incoming event. cno_0000009

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

1.3. API documentation 61

libNeuroML Documentation

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

62 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

BaseVoltageDepSynapse

class neuroml.nml.nml.BaseVoltageDepSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional)
= None, notes: a string (optional) = None, properties: list
of Property(s) (optional) = None, annotation: a Annotation
(optional) = None, neuro_lex_id: a NeuroLexId (optional)
= None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: BaseSynapse

BaseVoltageDepSynapse – Base type for synapses with a dependence on membrane potential

1.3. API documentation 63

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

64 Chapter 1. User guide

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

1.3. API documentation 65

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

BaseWithoutId

class neuroml.nml.nml.BaseWithoutId(extensiontype_=None, gds_collector_=None, **kwargs_)
Bases: GeneratedsSuper

BaseWithoutId – Base element without ID specified yet, e.g. for an element with a particular requirement on its
id which does not comply with NmlId (e.g. Segment needs nonNegativeInteger).

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

66 Chapter 1. User guide

libNeuroML Documentation

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

1.3. API documentation 67

libNeuroML Documentation

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

68 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

BiophysicalProperties

class neuroml.nml.nml.BiophysicalProperties(id: a NmlId (required) = None, metaid: a MetaId (optional)
= None, notes: a string (optional) = None, properties: list
of Property(s) (optional) = None, annotation: a Annotation
(optional) = None, membrane_properties: a
MembraneProperties (required) = None,
intracellular_properties: a IntracellularProperties
(optional) = None, extracellular_properties: a
ExtracellularProperties (optional) = None,
gds_collector_=None, **kwargs_)

Bases: Standalone

BiophysicalProperties – The biophysical properties of the cell , including the membraneProperties and the
intracellularProperties

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

1.3. API documentation 69

libNeuroML Documentation

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

70 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 71

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

BiophysicalProperties2CaPools

class neuroml.nml.nml.BiophysicalProperties2CaPools(id: a NmlId (required) = None, metaid: a MetaId
(optional) = None, notes: a string (optional) =
None, properties: list of Property(s) (optional) =
None, annotation: a Annotation (optional) =
None, membrane_properties2_ca_pools: a
MembraneProperties2CaPools (required) =
None, intracellular_properties2_ca_pools: a
IntracellularProperties2CaPools (optional) =
None, extracellular_properties: a
ExtracellularProperties (optional) = None,
gds_collector_=None, **kwargs_)

Bases: Standalone

BiophysicalProperties2CaPools – The biophysical properties of the cell , including the membraneProper-
ties2CaPools and the intracellularProperties2CaPools for a cell with two Ca pools

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

72 Chapter 1. User guide

libNeuroML Documentation

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,

1.3. API documentation 73

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

74 Chapter 1. User guide

libNeuroML Documentation

BlockMechanism

class neuroml.nml.nml.BlockMechanism(type: a BlockTypes (required) = None, species: a NmlId (required)
= None, block_concentration: a Nml2Quantity_concentration
(required) = None, scaling_conc: a Nml2Quantity_concentration
(required) = None, scaling_volt: a Nml2Quantity_voltage (required)
= None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need

1.3. API documentation 75

libNeuroML Documentation

to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

76 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

BlockingPlasticSynapse

class neuroml.nml.nml.BlockingPlasticSynapse(id: a NmlId (required) = None, metaid: a MetaId
(optional) = None, notes: a string (optional) = None,
properties: list of Property(s) (optional) = None,
annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, gbase: a
Nml2Quantity_conductance (required) = None, erev: a
Nml2Quantity_voltage (required) = None, tau_decay: a
Nml2Quantity_time (required) = None, tau_rise: a
Nml2Quantity_time (required) = None,
plasticity_mechanism: a PlasticityMechanism (optional)
= None, block_mechanism: a BlockMechanism (optional)
= None, gds_collector_=None, **kwargs_)

1.3. API documentation 77

libNeuroML Documentation

Bases: ExpTwoSynapse

BlockingPlasticSynapse – Biexponential synapse that allows for optional block and plasticity mechanisms, which
can be expressed as child elements.

Parameters

• tauRise (time) –

• tauDecay (time) –

• gbase (conductance) – Baseline conductance, generally the maximum conductance fol-
lowing a single spike

• erev (voltage) – Reversal potential of the synapse

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

78 Chapter 1. User guide

libNeuroML Documentation

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

1.3. API documentation 79

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Case

class neuroml.nml.nml.Case(condition: a string (optional) = None, value: a string (required) = None,
gds_collector_=None, **kwargs_)

Bases: GeneratedsSuper

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

80 Chapter 1. User guide

libNeuroML Documentation

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

1.3. API documentation 81

libNeuroML Documentation

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an

82 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Cell

class neuroml.nml.nml.Cell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a
string (optional) = None, properties: list of Property(s) (optional) = None,
annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId
(optional) = None, morphology_attr: a NmlId (optional) = None,
biophysical_properties_attr: a NmlId (optional) = None, morphology: a
Morphology (optional) = None, biophysical_properties: a BiophysicalProperties
(optional) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: BaseCell

Cell – Cell with segment s specified in a morphology element along with details on its biophysicalProperties
. NOTE: this can only be correctly simulated using jLEMS when there is a single segment in the cell, and v of
this cell represents the membrane potential in that isopotential segment.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

1.3. API documentation 83

libNeuroML Documentation

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

add_channel_density(nml_cell_doc, cd_id, ion_channel, cond_density, erev='0.0 mV', group_id='all',
ion='non_specific', ion_chan_def_file='')

Add channel density.

Parameters

• nml_cell_doc (NeuroMLDocument) – cell NeuroML document to which channel density
is to be added

• cd_id (str) – id for channel density

• ion_channel (str) – name of ion channel

• cond_density (str) – value of conductance density with units

• erev (str) – value of reversal potential with units

• group_id (str) – segment groups to add to

• ion (str) – name of ion

• ion_chan_def_file (str) – path to NeuroML2 file defining the ion channel, if empty,
it assumes the channel is defined in the same file

add_channel_density_v(channel_density_type, nml_cell_doc, ion_chan_def_file='', **kwargs)
Generic function to add channel density components to a Cell.

Parameters

• channel_density_type (str) – type of channel density to add. See https://docs.
neuroml.org/Userdocs/Schemas/Cells.html for the complete list.

• nml_cell_doc (NeuroMLDocument) – cell NeuroML document to which channel density
is to be added

• ion_chan_def_file (str) – path to NeuroML2 file defining the ion channel, if empty,
it assumes the channel is defined in the same file

• kwargs (Any) – named arguments for required channel density type

Returns
None

84 Chapter 1. User guide

https://docs.neuroml.org/Userdocs/Schemas/Cells.html
https://docs.neuroml.org/Userdocs/Schemas/Cells.html

libNeuroML Documentation

add_intracellular_property(property_name, **kwargs)
Generic function to add an intracellular property to the cell.

For a full list of membrane properties, see: https://docs.neuroml.org/Userdocs/Schemas/Cells.
html?#intracellularproperties

Parameters

• property_name (str) – name of intracellular property to add

• kwargs (Any) – named arguments for intracellular property to be added

Returns
None

add_membrane_property(property_name, **kwargs)
Generic function to add a membrane property to the cell.

For a full list of membrane properties, see: https://docs.neuroml.org/Userdocs/Schemas/Cells.
html?#membraneproperties

Please also see specific functions in this module, which are designed to be easier to use than this generic
function.

Parameters

• property_name (str) – name of membrane to add

• kwargs (Any) – named arguments for membrane property to be added

Returns
None

add_segment(prox, dist, seg_id=None, name=None, parent=None, fraction_along=1.0, group_id=None,
use_convention=True, seg_type=None, reorder_segment_groups=True)

Add a segment to the cell, to the provided segment group, creating it if required.

Parameters

• prox (list with 4 float entries: [x, y, z, diameter]) – proximal segment
information

• dist (list with 4 float entries: [x, y, z, diameter]) – dist segment in-
formation

• seg_id (str) – explicit ID to set for segment When not provided, the function will auto-
matically add an ID based on the number of segments already included in the cell. It is best
to either always set an explicit ID or let the function set it automatically, but not to mix the
two. A ValueError is raised if a segment with the provided ID already exists

• name (str) – name of segment If a name is given, it is used. If no name is given, but a
segment group is provided, the segment is named: “Seg<number>_<group name>” where
<number> is the number of the segment in the segment group. (to be read as “segment
<number> in <group>”; the group name should indicate the type here) If no name is given,
and no segment group is provided, the segment is simply named: “Seg<segment id>”.

• parent (SegmentParent) – parent segment

• fraction_along (float) – where the new segment is connected to the parent (0: distal
point, 1: proximal point)

• group_id (str) – id of segment group to add the segment to If a segment group with this
id does not exist, a new segment group will be created.

1.3. API documentation 85

https://docs.neuroml.org/Userdocs/Schemas/Cells.html
https://docs.neuroml.org/Userdocs/Schemas/Cells.html
https://docs.neuroml.org/Userdocs/Schemas/Cells.html
https://docs.neuroml.org/Userdocs/Schemas/Cells.html

libNeuroML Documentation

The suggested convention is: axon_, soma_, dend_ for axonal, somatic, and dendritic seg-
ment groups respectively.

Note that a newly created segment group will not be marked as an unbranched segment
group. If you wish to add a segment to an unbranched segment group, please create one
using add_unbranched_segment_group and then add segments to it.

• use_convention (bool) – whether the segment or its group should be added to the global
segment groups. The seg_type notes what global group this segment or its segment group
should also be added to.

• reorder_segment_groups (bool) – whether the groups should be reordered to put the
default segment groups last after the segment has been added. This is required for a valid
NeuroML file because segment groups included in the default groups should be declared
before they are used in the default groups. When adding lots of segments, one may want
to only reorder at the end of the process instead of after each segment is added.

This is only relevant if use_convention=True.

Seg_type
type of segment (“axon”, “dendrite”, “soma”) If use_convention is True, and a group_id is
provided, the segment group will also be added to the default segment groups if it has not
been previously added. If group_id is None, the segment will be added to the default groups
instead.

If use_convention is False, this is unused.

Returns
the created segment

Return type
Segment

Raises
ValueError – if seg_id is provided and a segment with this ID already exists

add_segment_group(group_id)
Add a new general segment group.

The segments included in this group do not need to be contiguous. This segment group will not be marked
as a section using the required NeuroLex ID.

Parameters
group_id (str) – ID of segment group

Returns
new segment group

Return type
SegmentGroup

add_unbranched_segment_group(group_id)
Add a new unbranched segment group.

This is similar to the add_segment_group method, but this segment group will be used to store contiguous
segments, which form an unbranched section of a cell.

Parameters
group_id (str) – ID of segment group

Returns
new segment group

86 Chapter 1. User guide

libNeuroML Documentation

Return type
SegmentGroup

add_unbranched_segments(points, parent=None, fraction_along=1.0, group_id=None,
use_convention=True, seg_type=None)

Add an unbranched list of segments to the cell.

The list of points will include the first proximal point where this should be joined to the cell, followed by a
list of distal points:

|-----|-----|-----|------|.....---|
p1 d1 d2 d3 d4 d N-1

So, a list of N points will create a list of N-1 segments

The list of points will be of the form:

[[x1, y1, z1, d1], [x2, y2, z2, d2] ...]

Please ensure that the first point, p1, is correctly set to ensure that this segment list is correctly connected
to the rest of the cell.

Parameters

• points (list of [x, y, z, d] points) – 3D points to create the segments

• parent (SegmentParent) – parent segment where first segment of list is to be attached

• fraction_along (float) – where the new segment list is connected to the parent (0:
distal point, 1: proximal point) Note that the second and following segments will all be
added at the distal point of the previous segment

• group_id (SegmentGroup) – segment group to add the segment to if a segment group
does not already exist, it will be created

• use_convention (bool) – whether helper segment groups should be created using the de-
fault convention See the documentation of the add_segment method for more information
on the convention

• seg_type (str) – type of segments (“axon”, “soma”, “dendrite”)

Returns
the segment group containing this new list of segments

Return type
SegmentGroup

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

1.3. API documentation 87

libNeuroML Documentation

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

create_unbranched_segment_group_branches(root_segment_id: int, use_convention: bool = True)
Organise the segments of the cell into new segment groups that each form a single contiguous unbranched
cell branch.

Note that the first segment (root segment) of a branch must have a proximal point that connects it to the rest
of the neuronal morphology. If, when constructing these branches, a root segment is found that does not
include a proximal point, one will be added using the get_actual_proximal method.

No other changes will be made to any segments, or to any pre-existing segment groups.

Parameters

• root_segment_id (int) – id of segment considered the root of the tree, generally the first
soma segment

• use_convention (bool) – toggle using NeuroML convention for segment groups

Returns
modified cell with new section groups

Return type
neuroml.Cell

get_actual_proximal(segment_id)
Get the proximal point of a segment.

If the proximal for the segment is set to None, calculate the proximal on the parent using fraction_along
and return it.

Parameters
segment_id – ID of segment

Returns
proximal point

get_all_segments_in_group(segment_group, assume_all_means_all=True)
Get all the segments in a segment group of the cell.

Parameters

88 Chapter 1. User guide

libNeuroML Documentation

• segment_group – segment group to get all segments of

• assume_all_means_all – return all segments if the “all” segment group wasn’t explicitly
defined

Returns
list of segment ids

Return type
list[int]

Raises
Exception – if no segment group is found in the cell.

get_ordered_segments_in_groups(group_list, check_parentage=False,
include_cumulative_lengths=False, include_path_lengths=False,
path_length_metric='Path Length from root')

Get ordered list of segments in specified groups

Parameters

• group_list (str or list) – a group id or list of groups to get segments from

• check_parentage (bool) – verify parentage

• include_commulative_lengths – also include cummulative lengths

• include_path_lengths (bool) – also include path lengths

• path_length_metric (str) – metric to use for path length (“Path Length from root” is
currently the only supported option, and the default)

Returns
dictionary of segments with additional information depending on what parameters were used:

Raises
Exception if check_parentage is True and parentage cannot be verified

get_segment(segment_id)
Get segment object by its id

Parameters
segment_id – ID of segment

Returns
segment

Raises
ValueError – if the segment is not found in the cell

get_segment_adjacency_list()

Get the adjacency list of all segments in the cell morphology. Returns a dict where each key is a parent
segment, and the value is the list of its children segments.

Segment without children (leaf segments) are not included as parents in the adjacency list.

Returns
dict with parent segments as keys and their children as values

Return type
dict

1.3. API documentation 89

libNeuroML Documentation

get_segment_group(sg_id)
Return the SegmentGroup object for the specified segment group id.

Parameters
sg_id (str) – id of segment group to find

Returns
SegmentGroup object of specified ID

Raises
ValueError – if segment group is not found in cell

get_segment_groups_by_substring(substring)
Get a dictionary of segment group IDs and the segment groups matching the specified substring

Parameters
substring (str) – substring to match

Returns
dictionary with segment group ID as key, and segment group as value

Raises
ValueError – if no matching segment groups are found in cell

get_segment_ids_vs_segments()

Get a dictionary of segment IDs and the segments in the cell.

Returns
dictionary with segment ID as key, and segment as value

get_segment_length(segment_id)
Get the length of the segment.

Parameters
segment_id – ID of segment

Returns
length of segment

get_segment_surface_area(segment_id)
Get the surface area of the segment.

Parameters
segment_id – ID of the segment

Returns
surface area of segment

get_segment_volume(segment_id)
Get volume of segment

Parameters
segment_id – ID of the segment

Returns
volume of the segment

get_segments_by_substring(substring)
Get a dictionary of segment IDs and the segment matching the specified substring

Parameters
substring (str) – substring to match

90 Chapter 1. User guide

libNeuroML Documentation

Returns
dictionary with segment ID as key, and segment as value

Raises
Exception – if no segments are found

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

neuro_lex_ids = {'axon': 'GO:0030424', 'dend': 'GO:0030425', 'section':
'sao864921383', 'soma': 'GO:0043025'}

optimise_segment_group(seg_group_id)
Optimise segment group with id seg_group_id.

Parameters
seg_group_id (str) – id of segment group to optimise

optimise_segment_groups()

Optimise all segment groups in the cell.

This will:

• deduplicate members and includes in segment groups

• remove members that have already been included using a segment group

1.3. API documentation 91

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

reorder_segment_groups()

Move default segment groups to the end.

This is required so that the segment groups included in the default groups are defined before they are used.

Returns
None

set_init_memb_potential(v, group_id='all')
Set the initial membrane potential of the cell.

Parameters

• v (str) – value to set for membrane potential with units

• group_id (str) – id of segment group to modify

set_resistivity(resistivity, group_id='all')→ None
Set the resistivity of the cell

Parameters
group_id (str) – segment group to modify

set_specific_capacitance(spec_cap, group_id='all')
Set the specific capacitance for the cell.

Parameters

• spec_cap (str) – value of specific capacitance with units

• group_id (str) – segment group to modify

92 Chapter 1. User guide

libNeuroML Documentation

set_spike_thresh(v, group_id='all')
Set the spike threshold of the cell.

Parameters

• v (str) – value to set for spike threshold with units

• group_id (str) – id of segment group to modify

setup_nml_cell(use_convention=True, overwrite=False)
Correctly initialise a NeuroML cell.

To be called after a new component has been created to initialise the cell with these properties:

• Morphology: id=”morphology”

• BiophysicalProperties: id=”biophys”:

– MembraneProperties

– IntracellularProperties

If use_convention is True, it also creates some default SegmentGroups for convenience:

• “all”, “soma_group”, “dendrite_group”, “axon_group” which are used by other helper functions to
include all, soma, dendrite, and axon segments respectively.

Note that since this cell does not currently include a segment in its morphology, it is not a valid NeuroML
construct. Use the add_segment and add_unbranched_segments functions to add segments and branches.
They will also populate the default segment groups.

Parameters

• id (str) – id of the cell

• use_convention (bool) – whether helper segment groups should be created using the
default convention

• overwrite (bool) – overwrite existing components

Returns
None

Return type
None

summary()

Print cell summary.

Currently prints:

• id of cell

• any notes

• number of segments

• number of segment groups

TODO: extend to show more information about the cell that may be useful to users.

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

1.3. API documentation 93

libNeuroML Documentation

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Cell2CaPools

class neuroml.nml.nml.Cell2CaPools(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, morphology_attr: a
NmlId (optional) = None, biophysical_properties_attr: a NmlId
(optional) = None, morphology: a Morphology (optional) = None,
biophysical_properties: a BiophysicalProperties (optional) = None,
biophysical_properties2_ca_pools: a BiophysicalProperties2CaPools
(optional) = None, gds_collector_=None, **kwargs_)

Bases: Cell

Cell2CaPools – Variant of cell with two independent Ca2+ pools. Cell with segment s specified in a morphology
element along with details on its biophysicalProperties . NOTE: this can only be correctly simulated using
jLEMS when there is a single segment in the cell, and v of this cell represents the membrane potential in that
isopotential segment.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

94 Chapter 1. User guide

libNeuroML Documentation

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

add_channel_density(nml_cell_doc, cd_id, ion_channel, cond_density, erev='0.0 mV', group_id='all',
ion='non_specific', ion_chan_def_file='')

Add channel density.

Parameters

• nml_cell_doc (NeuroMLDocument) – cell NeuroML document to which channel density
is to be added

• cd_id (str) – id for channel density

• ion_channel (str) – name of ion channel

• cond_density (str) – value of conductance density with units

• erev (str) – value of reversal potential with units

• group_id (str) – segment groups to add to

• ion (str) – name of ion

• ion_chan_def_file (str) – path to NeuroML2 file defining the ion channel, if empty,
it assumes the channel is defined in the same file

add_channel_density_v(channel_density_type, nml_cell_doc, ion_chan_def_file='', **kwargs)
Generic function to add channel density components to a Cell.

Parameters

• channel_density_type (str) – type of channel density to add. See https://docs.
neuroml.org/Userdocs/Schemas/Cells.html for the complete list.

• nml_cell_doc (NeuroMLDocument) – cell NeuroML document to which channel density
is to be added

• ion_chan_def_file (str) – path to NeuroML2 file defining the ion channel, if empty,
it assumes the channel is defined in the same file

• kwargs (Any) – named arguments for required channel density type

Returns
None

add_intracellular_property(property_name, **kwargs)
Generic function to add an intracellular property to the cell.

For a full list of membrane properties, see: https://docs.neuroml.org/Userdocs/Schemas/Cells.
html?#intracellularproperties

Parameters

• property_name (str) – name of intracellular property to add

• kwargs (Any) – named arguments for intracellular property to be added

Returns
None

1.3. API documentation 95

https://docs.neuroml.org/Userdocs/Schemas/Cells.html
https://docs.neuroml.org/Userdocs/Schemas/Cells.html
https://docs.neuroml.org/Userdocs/Schemas/Cells.html
https://docs.neuroml.org/Userdocs/Schemas/Cells.html

libNeuroML Documentation

add_membrane_property(property_name, **kwargs)
Generic function to add a membrane property to the cell.

For a full list of membrane properties, see: https://docs.neuroml.org/Userdocs/Schemas/Cells.
html?#membraneproperties

Please also see specific functions in this module, which are designed to be easier to use than this generic
function.

Parameters

• property_name (str) – name of membrane to add

• kwargs (Any) – named arguments for membrane property to be added

Returns
None

add_segment(prox, dist, seg_id=None, name=None, parent=None, fraction_along=1.0, group_id=None,
use_convention=True, seg_type=None, reorder_segment_groups=True)

Add a segment to the cell, to the provided segment group, creating it if required.

Parameters

• prox (list with 4 float entries: [x, y, z, diameter]) – proximal segment
information

• dist (list with 4 float entries: [x, y, z, diameter]) – dist segment in-
formation

• seg_id (str) – explicit ID to set for segment When not provided, the function will auto-
matically add an ID based on the number of segments already included in the cell. It is best
to either always set an explicit ID or let the function set it automatically, but not to mix the
two. A ValueError is raised if a segment with the provided ID already exists

• name (str) – name of segment If a name is given, it is used. If no name is given, but a
segment group is provided, the segment is named: “Seg<number>_<group name>” where
<number> is the number of the segment in the segment group. (to be read as “segment
<number> in <group>”; the group name should indicate the type here) If no name is given,
and no segment group is provided, the segment is simply named: “Seg<segment id>”.

• parent (SegmentParent) – parent segment

• fraction_along (float) – where the new segment is connected to the parent (0: distal
point, 1: proximal point)

• group_id (str) – id of segment group to add the segment to If a segment group with this
id does not exist, a new segment group will be created.

The suggested convention is: axon_, soma_, dend_ for axonal, somatic, and dendritic seg-
ment groups respectively.

Note that a newly created segment group will not be marked as an unbranched segment
group. If you wish to add a segment to an unbranched segment group, please create one
using add_unbranched_segment_group and then add segments to it.

• use_convention (bool) – whether the segment or its group should be added to the global
segment groups. The seg_type notes what global group this segment or its segment group
should also be added to.

• reorder_segment_groups (bool) – whether the groups should be reordered to put the
default segment groups last after the segment has been added. This is required for a valid
NeuroML file because segment groups included in the default groups should be declared

96 Chapter 1. User guide

https://docs.neuroml.org/Userdocs/Schemas/Cells.html
https://docs.neuroml.org/Userdocs/Schemas/Cells.html

libNeuroML Documentation

before they are used in the default groups. When adding lots of segments, one may want
to only reorder at the end of the process instead of after each segment is added.

This is only relevant if use_convention=True.

Seg_type
type of segment (“axon”, “dendrite”, “soma”) If use_convention is True, and a group_id is
provided, the segment group will also be added to the default segment groups if it has not
been previously added. If group_id is None, the segment will be added to the default groups
instead.

If use_convention is False, this is unused.

Returns
the created segment

Return type
Segment

Raises
ValueError – if seg_id is provided and a segment with this ID already exists

add_segment_group(group_id)
Add a new general segment group.

The segments included in this group do not need to be contiguous. This segment group will not be marked
as a section using the required NeuroLex ID.

Parameters
group_id (str) – ID of segment group

Returns
new segment group

Return type
SegmentGroup

add_unbranched_segment_group(group_id)
Add a new unbranched segment group.

This is similar to the add_segment_group method, but this segment group will be used to store contiguous
segments, which form an unbranched section of a cell.

Parameters
group_id (str) – ID of segment group

Returns
new segment group

Return type
SegmentGroup

add_unbranched_segments(points, parent=None, fraction_along=1.0, group_id=None,
use_convention=True, seg_type=None)

Add an unbranched list of segments to the cell.

The list of points will include the first proximal point where this should be joined to the cell, followed by a
list of distal points:

|-----|-----|-----|------|.....---|
p1 d1 d2 d3 d4 d N-1

1.3. API documentation 97

libNeuroML Documentation

So, a list of N points will create a list of N-1 segments

The list of points will be of the form:

[[x1, y1, z1, d1], [x2, y2, z2, d2] ...]

Please ensure that the first point, p1, is correctly set to ensure that this segment list is correctly connected
to the rest of the cell.

Parameters

• points (list of [x, y, z, d] points) – 3D points to create the segments

• parent (SegmentParent) – parent segment where first segment of list is to be attached

• fraction_along (float) – where the new segment list is connected to the parent (0:
distal point, 1: proximal point) Note that the second and following segments will all be
added at the distal point of the previous segment

• group_id (SegmentGroup) – segment group to add the segment to if a segment group
does not already exist, it will be created

• use_convention (bool) – whether helper segment groups should be created using the de-
fault convention See the documentation of the add_segment method for more information
on the convention

• seg_type (str) – type of segments (“axon”, “soma”, “dendrite”)

Returns
the segment group containing this new list of segments

Return type
SegmentGroup

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

98 Chapter 1. User guide

libNeuroML Documentation

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

create_unbranched_segment_group_branches(root_segment_id: int, use_convention: bool = True)
Organise the segments of the cell into new segment groups that each form a single contiguous unbranched
cell branch.

Note that the first segment (root segment) of a branch must have a proximal point that connects it to the rest
of the neuronal morphology. If, when constructing these branches, a root segment is found that does not
include a proximal point, one will be added using the get_actual_proximal method.

No other changes will be made to any segments, or to any pre-existing segment groups.

Parameters

• root_segment_id (int) – id of segment considered the root of the tree, generally the first
soma segment

• use_convention (bool) – toggle using NeuroML convention for segment groups

Returns
modified cell with new section groups

Return type
neuroml.Cell

get_actual_proximal(segment_id)
Get the proximal point of a segment.

If the proximal for the segment is set to None, calculate the proximal on the parent using fraction_along
and return it.

Parameters
segment_id – ID of segment

Returns
proximal point

get_all_segments_in_group(segment_group, assume_all_means_all=True)
Get all the segments in a segment group of the cell.

Parameters

• segment_group – segment group to get all segments of

• assume_all_means_all – return all segments if the “all” segment group wasn’t explicitly
defined

Returns
list of segment ids

Return type
list[int]

Raises
Exception – if no segment group is found in the cell.

1.3. API documentation 99

libNeuroML Documentation

get_ordered_segments_in_groups(group_list, check_parentage=False,
include_cumulative_lengths=False, include_path_lengths=False,
path_length_metric='Path Length from root')

Get ordered list of segments in specified groups

Parameters

• group_list (str or list) – a group id or list of groups to get segments from

• check_parentage (bool) – verify parentage

• include_commulative_lengths – also include cummulative lengths

• include_path_lengths (bool) – also include path lengths

• path_length_metric (str) – metric to use for path length (“Path Length from root” is
currently the only supported option, and the default)

Returns
dictionary of segments with additional information depending on what parameters were used:

Raises
Exception if check_parentage is True and parentage cannot be verified

get_segment(segment_id)
Get segment object by its id

Parameters
segment_id – ID of segment

Returns
segment

Raises
ValueError – if the segment is not found in the cell

get_segment_adjacency_list()

Get the adjacency list of all segments in the cell morphology. Returns a dict where each key is a parent
segment, and the value is the list of its children segments.

Segment without children (leaf segments) are not included as parents in the adjacency list.

Returns
dict with parent segments as keys and their children as values

Return type
dict

get_segment_group(sg_id)
Return the SegmentGroup object for the specified segment group id.

Parameters
sg_id (str) – id of segment group to find

Returns
SegmentGroup object of specified ID

Raises
ValueError – if segment group is not found in cell

get_segment_groups_by_substring(substring)
Get a dictionary of segment group IDs and the segment groups matching the specified substring

100 Chapter 1. User guide

libNeuroML Documentation

Parameters
substring (str) – substring to match

Returns
dictionary with segment group ID as key, and segment group as value

Raises
ValueError – if no matching segment groups are found in cell

get_segment_ids_vs_segments()

Get a dictionary of segment IDs and the segments in the cell.

Returns
dictionary with segment ID as key, and segment as value

get_segment_length(segment_id)
Get the length of the segment.

Parameters
segment_id – ID of segment

Returns
length of segment

get_segment_surface_area(segment_id)
Get the surface area of the segment.

Parameters
segment_id – ID of the segment

Returns
surface area of segment

get_segment_volume(segment_id)
Get volume of segment

Parameters
segment_id – ID of the segment

Returns
volume of the segment

get_segments_by_substring(substring)
Get a dictionary of segment IDs and the segment matching the specified substring

Parameters
substring (str) – substring to match

Returns
dictionary with segment ID as key, and segment as value

Raises
Exception – if no segments are found

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

1.3. API documentation 101

libNeuroML Documentation

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

neuro_lex_ids = {'axon': 'GO:0030424', 'dend': 'GO:0030425', 'section':
'sao864921383', 'soma': 'GO:0043025'}

optimise_segment_group(seg_group_id)
Optimise segment group with id seg_group_id.

Parameters
seg_group_id (str) – id of segment group to optimise

optimise_segment_groups()

Optimise all segment groups in the cell.

This will:

• deduplicate members and includes in segment groups

• remove members that have already been included using a segment group

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids

102 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

reorder_segment_groups()

Move default segment groups to the end.

This is required so that the segment groups included in the default groups are defined before they are used.

Returns
None

set_init_memb_potential(v, group_id='all')
Set the initial membrane potential of the cell.

Parameters

• v (str) – value to set for membrane potential with units

• group_id (str) – id of segment group to modify

set_resistivity(resistivity, group_id='all')→ None
Set the resistivity of the cell

Parameters
group_id (str) – segment group to modify

set_specific_capacitance(spec_cap, group_id='all')
Set the specific capacitance for the cell.

Parameters

• spec_cap (str) – value of specific capacitance with units

• group_id (str) – segment group to modify

set_spike_thresh(v, group_id='all')
Set the spike threshold of the cell.

Parameters

• v (str) – value to set for spike threshold with units

• group_id (str) – id of segment group to modify

setup_nml_cell(use_convention=True, overwrite=False)
Correctly initialise a NeuroML cell.

To be called after a new component has been created to initialise the cell with these properties:

• Morphology: id=”morphology”

• BiophysicalProperties: id=”biophys”:

1.3. API documentation 103

libNeuroML Documentation

– MembraneProperties

– IntracellularProperties

If use_convention is True, it also creates some default SegmentGroups for convenience:

• “all”, “soma_group”, “dendrite_group”, “axon_group” which are used by other helper functions to
include all, soma, dendrite, and axon segments respectively.

Note that since this cell does not currently include a segment in its morphology, it is not a valid NeuroML
construct. Use the add_segment and add_unbranched_segments functions to add segments and branches.
They will also populate the default segment groups.

Parameters

• id (str) – id of the cell

• use_convention (bool) – whether helper segment groups should be created using the
default convention

• overwrite (bool) – overwrite existing components

Returns
None

Return type
None

summary()

Print cell summary.

Currently prints:

• id of cell

• any notes

• number of segments

• number of segment groups

TODO: extend to show more information about the cell that may be useful to users.

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

104 Chapter 1. User guide

libNeuroML Documentation

CellSet

class neuroml.nml.nml.CellSet(id: a NmlId (required) = None, select: a string (required) = None,
anytypeobjs_=None, gds_collector_=None, **kwargs_)

Bases: Base

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

1.3. API documentation 105

libNeuroML Documentation

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

106 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ChannelDensity

class neuroml.nml.nml.ChannelDensity(id: a NmlId (required) = None, ion_channel: a NmlId (required) =
None, cond_density: a Nml2Quantity_conductanceDensity
(optional) = None, erev: a Nml2Quantity_voltage (required) = None,
segment_groups: a NmlId (optional) = 'all', segments: a
NonNegativeInteger (optional) = None, ion: a NmlId (required) =
None, variable_parameters: list of VariableParameter(s) (optional)
= None, extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: Base

ChannelDensity – Specifies a time varying ohmic conductance density, gDensity, which is distributed on an area
of the cell (specified in membraneProperties) with fixed reversal potential erev producing a current density
iDensity

Parameters

• erev (voltage) – The reversal potential of the current produced

• condDensity (conductanceDensity) –

1.3. API documentation 107

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

108 Chapter 1. User guide

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

1.3. API documentation 109

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ChannelDensityGHK

class neuroml.nml.nml.ChannelDensityGHK(id: a NmlId (required) = None, ion_channel: a NmlId (required)
= None, permeability: a Nml2Quantity_permeability (required)
= None, segment_groups: a NmlId (optional) = 'all', segments:
a NonNegativeInteger (optional) = None, ion: a NmlId
(required) = None, gds_collector_=None, **kwargs_)

Bases: Base

ChannelDensityGHK – Specifies a time varying conductance density, gDensity, which is distributed on an area
of the cell, producing a current density iDensity and whose reversal potential is calculated from the Goldman
Hodgkin Katz equation. Hard coded for Ca only! See https://github.com/OpenSourceBrain/ghk-nernst.

Parameters
permeability (permeability) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

110 Chapter 1. User guide

https://github.com/OpenSourceBrain/ghk-nernst

libNeuroML Documentation

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

1.3. API documentation 111

libNeuroML Documentation

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

112 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ChannelDensityGHK2

class neuroml.nml.nml.ChannelDensityGHK2(id: a NmlId (required) = None, ion_channel: a NmlId
(required) = None, cond_density: a
Nml2Quantity_conductanceDensity (optional) = None,
segment_groups: a NmlId (optional) = 'all', segments: a
NonNegativeInteger (optional) = None, ion: a NmlId (required)
= None, gds_collector_=None, **kwargs_)

Bases: Base

ChannelDensityGHK2 – Time varying conductance density, gDensity, which is distributed on an area of the cel
l, producing a current density iDensity. Modified version of Jaffe et al. 1994 (used also in Lawrence et al. 2006
). See https://github.com/OpenSourceBrain/ghk-nernst.

Parameters
condDensity (conductanceDensity) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

1.3. API documentation 113

https://github.com/OpenSourceBrain/ghk-nernst

libNeuroML Documentation

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

114 Chapter 1. User guide

libNeuroML Documentation

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

1.3. API documentation 115

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ChannelDensityNernst

class neuroml.nml.nml.ChannelDensityNernst(id: a NmlId (required) = None, ion_channel: a NmlId
(required) = None, cond_density: a
Nml2Quantity_conductanceDensity (optional) = None,
segment_groups: a NmlId (optional) = 'all', segments: a
NonNegativeInteger (optional) = None, ion: a NmlId
(required) = None, variable_parameters: list of
VariableParameter(s) (optional) = None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: Base

ChannelDensityNernst – Specifies a time varying conductance density, gDensity, which is distributed on an
area of the cell, producing a current density iDensity and whose reversal potential is calculated from the Nernst
equation. Hard coded for Ca only! See https://github.com/OpenSourceBrain/ghk-nernst.

Parameters
condDensity (conductanceDensity) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

116 Chapter 1. User guide

https://github.com/OpenSourceBrain/ghk-nernst

libNeuroML Documentation

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

1.3. API documentation 117

libNeuroML Documentation

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

118 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ChannelDensityNernstCa2

class neuroml.nml.nml.ChannelDensityNernstCa2(id: a NmlId (required) = None, ion_channel: a NmlId
(required) = None, cond_density: a
Nml2Quantity_conductanceDensity (optional) = None,
segment_groups: a NmlId (optional) = 'all', segments: a
NonNegativeInteger (optional) = None, ion: a NmlId
(required) = None, variable_parameters: list of
VariableParameter(s) (optional) = None,
gds_collector_=None, **kwargs_)

Bases: ChannelDensityNernst

ChannelDensityNernstCa2 – This component is similar to the original component type channelDensityNernst
but it is changed in order to have a reversal potential that depends on a second independent Ca++ pool (ca2).
See https://github.com/OpenSourceBrain/ghk-nernst.

Parameters
condDensity (conductanceDensity) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

1.3. API documentation 119

https://github.com/OpenSourceBrain/ghk-nernst

libNeuroML Documentation

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

120 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 121

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

ChannelDensityNonUniform

class neuroml.nml.nml.ChannelDensityNonUniform(id: a NmlId (required) = None, ion_channel: a NmlId
(required) = None, erev: a Nml2Quantity_voltage
(required) = None, ion: a NmlId (required) = None,
variable_parameters: list of VariableParameter(s)
(optional) = None, gds_collector_=None, **kwargs_)

Bases: Base

ChannelDensityNonUniform – Specifies a time varying ohmic conductance density, which is distributed on a
region of the cell. The conductance density of the channel is not uniform, but is set using the variableParameter .
Note, there is no dynamical description of this in LEMS yet, as this type only makes sense for multicompartmental
cells. A ComponentType for this needs to be present to enable export of NeuroML 2 multicompartmental cells
via LEMS/jNeuroML to NEURON

Parameters
erev (voltage) – The reversal potential of the current produced

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

122 Chapter 1. User guide

libNeuroML Documentation

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,

1.3. API documentation 123

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

124 Chapter 1. User guide

libNeuroML Documentation

ChannelDensityNonUniformGHK

class neuroml.nml.nml.ChannelDensityNonUniformGHK(id: a NmlId (required) = None, ion_channel: a
NmlId (required) = None, ion: a NmlId (required)
= None, variable_parameters: list of
VariableParameter(s) (optional) = None,
gds_collector_=None, **kwargs_)

Bases: Base

ChannelDensityNonUniformGHK – Specifies a time varying conductance density, which is distributed on a
region of the cell, and whose current is calculated from the Goldman-Hodgkin-Katz equation. Hard coded for
Ca only!. The conductance density of the channel is not uniform, but is set using the variableParameter . Note,
there is no dynamical description of this in LEMS yet, as this type only makes sense for multicompartmental
cells. A ComponentType for this needs to be present to enable export of NeuroML 2 multicompartmental cells
via LEMS/jNeuroML to NEURON

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

1.3. API documentation 125

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

126 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 127

libNeuroML Documentation

ChannelDensityNonUniformNernst

class neuroml.nml.nml.ChannelDensityNonUniformNernst(id: a NmlId (required) = None, ion_channel: a
NmlId (required) = None, ion: a NmlId
(required) = None, variable_parameters: list of
VariableParameter(s) (optional) = None,
gds_collector_=None, **kwargs_)

Bases: Base

ChannelDensityNonUniformNernst – Specifies a time varying conductance density, which is distributed on a
region of the cell, and whose reversal potential is calculated from the Nernst equation. Hard coded for Ca only!.
The conductance density of the channel is not uniform, but is set using the variableParameter . Note, there
is no dynamical description of this in LEMS yet, as this type only makes sense for multicompartmental cells.
A ComponentType for this needs to be present to enable export of NeuroML 2 multicompartmental cells via
LEMS/jNeuroML to NEURON

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

128 Chapter 1. User guide

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

1.3. API documentation 129

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

130 Chapter 1. User guide

libNeuroML Documentation

ChannelDensityVShift

class neuroml.nml.nml.ChannelDensityVShift(id: a NmlId (required) = None, ion_channel: a NmlId
(required) = None, cond_density: a
Nml2Quantity_conductanceDensity (optional) = None, erev:
a Nml2Quantity_voltage (required) = None,
segment_groups: a NmlId (optional) = 'all', segments: a
NonNegativeInteger (optional) = None, ion: a NmlId
(required) = None, variable_parameters: list of
VariableParameter(s) (optional) = None, v_shift: a
Nml2Quantity_voltage (required) = None,
gds_collector_=None, **kwargs_)

Bases: ChannelDensity

ChannelDensityVShift – Same as channelDensity , but with a vShift parameter to change voltage activation of
gates. The exact usage of vShift in expressions for rates is determined by the individual gates.

Parameters

• vShift (voltage) –

• erev (voltage) – The reversal potential of the current produced

• condDensity (conductanceDensity) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

1.3. API documentation 131

libNeuroML Documentation

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

132 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 133

libNeuroML Documentation

ChannelPopulation

class neuroml.nml.nml.ChannelPopulation(id: a NmlId (required) = None, ion_channel: a NmlId (required)
= None, number: a NonNegativeInteger (required) = None, erev:
a Nml2Quantity_voltage (required) = None, segment_groups: a
NmlId (optional) = 'all', segments: a NonNegativeInteger
(optional) = None, ion: a NmlId (required) = None,
variable_parameters: list of VariableParameter(s) (optional) =
None, gds_collector_=None, **kwargs_)

Bases: Base

ChannelPopulation – Population of a number of ohmic ion channels. These each produce a conductance chan-
nelg across a reversal potential erev, giving a total current i. Note that active membrane currents are more
frequently specified as a density over an area of the cell using channelDensity

Parameters

• number (none) – The number of channels present. This will be multiplied by the time vary-
ing conductance of the individual ion channel (which extends baseIonChannel) to produce
the total conductance

• erev (voltage) – The reversal potential of the current produced

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

134 Chapter 1. User guide

libNeuroML Documentation

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

1.3. API documentation 135

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

136 Chapter 1. User guide

libNeuroML Documentation

ClosedState

class neuroml.nml.nml.ClosedState(id: a NmlId (required) = None, gds_collector_=None, **kwargs_)
Bases: Base

ClosedState – A KSState with relativeConductance of 0

Parameters
relativeConductance (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need

1.3. API documentation 137

libNeuroML Documentation

to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

138 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ComponentType

class neuroml.nml.nml.ComponentType(name: a string (required) = None, extends: a string (optional) =
None, description: a string (optional) = None, Property: list of
Property(s) (optional) = None, Parameter: list of Parameter(s)
(optional) = None, Constant: list of Constant(s) (optional) = None,
Exposure: list of Exposure(s) (optional) = None, Requirement: list of
Requirement(s) (optional) = None, InstanceRequirement: list of
InstanceRequirement(s) (optional) = None, Dynamics: list of
Dynamics(s) (optional) = None, gds_collector_=None, **kwargs_)

Bases: GeneratedsSuper

ComponentType – Contains an extension to NeuroML by creating custom LEMS ComponentType.

1.3. API documentation 139

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

140 Chapter 1. User guide

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

1.3. API documentation 141

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

CompoundInput

class neuroml.nml.nml.CompoundInput(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
pulse_generators: list of PulseGenerator(s) (optional) = None,
sine_generators: list of SineGenerator(s) (optional) = None,
ramp_generators: list of RampGenerator(s) (optional) = None,
gds_collector_=None, **kwargs_)

Bases: Standalone

CompoundInput – Generates a current which is the sum of all its child basePointCurrent element, e. g. can be
a combination of pulseGenerator , sineGenerator elements producing a single i. Scaled by weight, if set

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

142 Chapter 1. User guide

libNeuroML Documentation

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child

1.3. API documentation 143

libNeuroML Documentation

elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

144 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

CompoundInputDL

class neuroml.nml.nml.CompoundInputDL(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation (optional)
= None, pulse_generator_dls: list of PulseGeneratorDL(s)
(optional) = None, sine_generator_dls: list of SineGeneratorDL(s)
(optional) = None, ramp_generator_dls: list of
RampGeneratorDL(s) (optional) = None, gds_collector_=None,
**kwargs_)

Bases: Standalone

CompoundInputDL – Generates a current which is the sum of all its child basePointCurrentDL elements, e.
g. can be a combination of pulseGeneratorDL , sineGeneratorDL elements producing a single i. Scaled by
weight, if set

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

1.3. API documentation 145

libNeuroML Documentation

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

146 Chapter 1. User guide

libNeuroML Documentation

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

1.3. API documentation 147

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ConcentrationModel_D

class neuroml.nml.nml.ConcentrationModel_D(id: a NmlId (required) = None, metaid: a MetaId (optional)
= None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, ion: a NmlId (required) = None,
resting_conc: a Nml2Quantity_concentration (required) =
None, decay_constant: a Nml2Quantity_time (required) =
None, shell_thickness: a Nml2Quantity_length (required) =
None, type: a string (required) =
'decayingPoolConcentrationModel', gds_collector_=None,
**kwargs_)

Bases: DecayingPoolConcentrationModel

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

148 Chapter 1. User guide

libNeuroML Documentation

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

1.3. API documentation 149

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

150 Chapter 1. User guide

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

ConditionalDerivedVariable

class neuroml.nml.nml.ConditionalDerivedVariable(name: a string (required) = None, dimension: a
string (required) = None, description: a string
(optional) = None, exposure: a string (optional) =
None, Case: list of Case(s) (required) = None,
gds_collector_=None, **kwargs_)

Bases: NamedDimensionalVariable

ConditionalDerivedVariable – LEMS ComponentType for ConditionalDerivedVariable

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

1.3. API documentation 151

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

152 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 153

libNeuroML Documentation

Connection

class neuroml.nml.nml.Connection(id: a NonNegativeInteger (required) = None, neuro_lex_id: a NeuroLexId
(optional) = None, pre_cell_id: a string (required) = None,
pre_segment_id: a NonNegativeInteger (optional) = '0',
pre_fraction_along: a ZeroToOne (optional) = '0.5', post_cell_id: a
string (required) = None, post_segment_id: a NonNegativeInteger
(optional) = '0', post_fraction_along: a ZeroToOne (optional) = '0.5',
gds_collector_=None, **kwargs_)

Bases: BaseConnectionOldFormat

Connection – Event connection directly between named components, which gets processed via a new instance
of a synapse component which is created on the target component. Normally contained inside a projection
element.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

154 Chapter 1. User guide

libNeuroML Documentation

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

get_post_cell_id()

Get the ID of the post-synaptic cell

Returns
ID of post-synaptic cell

Return type
str

get_post_fraction_along()

Get post-synaptic fraction along information

get_post_info()

Get post-synaptic information summary

get_post_segment_id()

Get the ID of the post-synpatic segment

Returns
ID of post-synaptic segment.

Return type
str

get_pre_cell_id()

Get the ID of the pre-synaptic cell

Returns
ID of pre-synaptic cell

Return type
str

get_pre_fraction_along()

Get pre-synaptic fraction along information

1.3. API documentation 155

libNeuroML Documentation

get_pre_info()

Get pre-synaptic information summary

get_pre_segment_id()

Get the ID of the pre-synpatic segment

Returns
ID of pre-synaptic segment.

Return type
str

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

156 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ConnectionWD

class neuroml.nml.nml.ConnectionWD(id: a NonNegativeInteger (required) = None, neuro_lex_id: a
NeuroLexId (optional) = None, pre_cell_id: a string (required) =
None, pre_segment_id: a NonNegativeInteger (optional) = '0',
pre_fraction_along: a ZeroToOne (optional) = '0.5', post_cell_id: a
string (required) = None, post_segment_id: a NonNegativeInteger
(optional) = '0', post_fraction_along: a ZeroToOne (optional) = '0.5',
weight: a float (required) = None, delay: a Nml2Quantity_time
(required) = None, gds_collector_=None, **kwargs_)

Bases: BaseConnectionOldFormat

ConnectionWD – Event connection between named components, which gets processed via a new instance of
a synapse component which is created on the target component, includes setting of weight and delay for the
synaptic connection

Parameters

• weight (none) –

1.3. API documentation 157

libNeuroML Documentation

• delay (time) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

158 Chapter 1. User guide

libNeuroML Documentation

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

get_delay_in_ms()

Get connection delay in milli seconds

Returns
connection delay in milli seconds

Return type
float

get_post_cell_id()

Get the ID of the post-synaptic cell

Returns
ID of post-synaptic cell

Return type
str

get_post_fraction_along()

Get post-synaptic fraction along information

get_post_info()

Get post-synaptic information summary

get_post_segment_id()

Get the ID of the post-synpatic segment

Returns
ID of post-synaptic segment.

Return type
str

get_pre_cell_id()

Get the ID of the pre-synaptic cell

Returns
ID of pre-synaptic cell

Return type
str

get_pre_fraction_along()

Get pre-synaptic fraction along information

get_pre_info()

Get pre-synaptic information summary

get_pre_segment_id()

Get the ID of the pre-synpatic segment

Returns
ID of pre-synaptic segment.

1.3. API documentation 159

libNeuroML Documentation

Return type
str

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an

160 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Constant

class neuroml.nml.nml.Constant(name: a string (required) = None, dimension: a string (required) = None,
value: a Nml2Quantity (required) = None, description: a string (optional) =
None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

Constant – LEMS ComponentType for Constant.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

1.3. API documentation 161

libNeuroML Documentation

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

162 Chapter 1. User guide

libNeuroML Documentation

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

1.3. API documentation 163

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ContinuousConnection

class neuroml.nml.nml.ContinuousConnection(id: a NonNegativeInteger (required) = None, neuro_lex_id:
a NeuroLexId (optional) = None, pre_cell: a string
(required) = None, pre_segment: a NonNegativeInteger
(optional) = '0', pre_fraction_along: a ZeroToOne (optional)
= '0.5', post_cell: a string (required) = None, post_segment:
a NonNegativeInteger (optional) = '0', post_fraction_along:
a ZeroToOne (optional) = '0.5', pre_component: a NmlId
(required) = None, post_component: a NmlId (required) =
None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: BaseConnectionNewFormat

ContinuousConnection – An instance of a connection in a continuousProjection between presynapticPopula-
tion to another postsynapticPopulation through a preComponent at the start and postComponent at the end.
Can be used for analog synapses.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

164 Chapter 1. User guide

libNeuroML Documentation

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

get_post_cell_id()

Get the ID of the post-synaptic cell

Returns
ID of post-synaptic cell

Return type
str

get_post_fraction_along()

Get post-synaptic fraction along information

get_post_info()

Get post-synaptic information summary

get_post_segment_id()

Get the ID of the post-synpatic segment

Returns
ID of post-synaptic segment.

Return type
str

1.3. API documentation 165

libNeuroML Documentation

get_pre_cell_id()

Get the ID of the pre-synaptic cell

Returns
ID of pre-synaptic cell

Return type
str

get_pre_fraction_along()

Get pre-synaptic fraction along information

get_pre_info()

Get pre-synaptic information summary

get_pre_segment_id()

Get the ID of the pre-synpatic segment

Returns
ID of pre-synaptic segment.

Return type
str

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

166 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 167

libNeuroML Documentation

ContinuousConnectionInstance

class neuroml.nml.nml.ContinuousConnectionInstance(id: a NonNegativeInteger (required) = None,
neuro_lex_id: a NeuroLexId (optional) = None,
pre_cell: a string (required) = None,
pre_segment: a NonNegativeInteger (optional) =
'0', pre_fraction_along: a ZeroToOne (optional) =
'0.5', post_cell: a string (required) = None,
post_segment: a NonNegativeInteger (optional) =
'0', post_fraction_along: a ZeroToOne (optional)
= '0.5', pre_component: a NmlId (required) =
None, post_component: a NmlId (required) =
None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: ContinuousConnection

ContinuousConnectionInstance – An instance of a connection in a continuousProjection between presynap-
ticPopulation to another postsynapticPopulation through a preComponent at the start and postComponent
at the end. Populations need to be of type populationList and contain instance and location elements. Can be
used for analog synapses.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

168 Chapter 1. User guide

libNeuroML Documentation

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

get_post_cell_id()

Get the ID of the post-synaptic cell

Returns
ID of post-synaptic cell

Return type
str

get_post_fraction_along()

Get post-synaptic fraction along information

get_post_info()

Get post-synaptic information summary

get_post_segment_id()

Get the ID of the post-synpatic segment

Returns
ID of post-synaptic segment.

Return type
str

get_pre_cell_id()

Get the ID of the pre-synaptic cell

Returns
ID of pre-synaptic cell

Return type
str

1.3. API documentation 169

libNeuroML Documentation

get_pre_fraction_along()

Get pre-synaptic fraction along information

get_pre_info()

Get pre-synaptic information summary

get_pre_segment_id()

Get the ID of the pre-synpatic segment

Returns
ID of pre-synaptic segment.

Return type
str

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

170 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ContinuousConnectionInstanceW

class neuroml.nml.nml.ContinuousConnectionInstanceW(id: a NonNegativeInteger (required) = None,
neuro_lex_id: a NeuroLexId (optional) = None,
pre_cell: a string (required) = None,
pre_segment: a NonNegativeInteger (optional) =
'0', pre_fraction_along: a ZeroToOne (optional)
= '0.5', post_cell: a string (required) = None,
post_segment: a NonNegativeInteger (optional)
= '0', post_fraction_along: a ZeroToOne
(optional) = '0.5', pre_component: a NmlId
(required) = None, post_component: a NmlId
(required) = None, weight: a float (required) =
None, gds_collector_=None, **kwargs_)

1.3. API documentation 171

libNeuroML Documentation

Bases: ContinuousConnectionInstance

ContinuousConnectionInstanceW – An instance of a connection in a continuousProjection between presynap-
ticPopulation to another postsynapticPopulation through a preComponent at the start and postComponent
at the end. Populations need to be of type populationList and contain instance and location elements. Can be
used for analog synapses. Includes setting of weight for the connection

Parameters
weight (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class

172 Chapter 1. User guide

libNeuroML Documentation

type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

get_post_cell_id()

Get the ID of the post-synaptic cell

Returns
ID of post-synaptic cell

Return type
str

get_post_fraction_along()

Get post-synaptic fraction along information

get_post_info()

Get post-synaptic information summary

get_post_segment_id()

Get the ID of the post-synpatic segment

Returns
ID of post-synaptic segment.

Return type
str

get_pre_cell_id()

Get the ID of the pre-synaptic cell

Returns
ID of pre-synaptic cell

Return type
str

get_pre_fraction_along()

Get pre-synaptic fraction along information

get_pre_info()

Get pre-synaptic information summary

get_pre_segment_id()

Get the ID of the pre-synpatic segment

Returns
ID of pre-synaptic segment.

1.3. API documentation 173

libNeuroML Documentation

Return type
str

get_weight()

Get weight.

If weight is not set, the default value of 1.0 is returned.

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids

174 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ContinuousProjection

class neuroml.nml.nml.ContinuousProjection(id: a NmlId (required) = None, presynaptic_population: a
NmlId (required) = None, postsynaptic_population: a NmlId
(required) = None, continuous_connections: list of
ContinuousConnection(s) (optional) = None,
continuous_connection_instances: list of
ContinuousConnectionInstance(s) (optional) = None,
continuous_connection_instance_ws: list of
ContinuousConnectionInstanceW(s) (optional) = None,
gds_collector_=None, **kwargs_)

Bases: BaseProjection

ContinuousProjection – A projection between presynapticPopulation and postsynapticPopulation through
components preComponent at the start and postComponent at the end of a continuousConnection or contin-
uousConnectionInstance . Can be used for analog synapses.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

1.3. API documentation 175

libNeuroML Documentation

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

176 Chapter 1. User guide

libNeuroML Documentation

exportHdf5(h5file, h5Group)
Export to HDF5 file.

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an

1.3. API documentation 177

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

DecayingPoolConcentrationModel

class neuroml.nml.nml.DecayingPoolConcentrationModel(id: a NmlId (required) = None, metaid: a
MetaId (optional) = None, notes: a string
(optional) = None, properties: list of
Property(s) (optional) = None, annotation: a
Annotation (optional) = None, ion: a NmlId
(required) = None, resting_conc: a
Nml2Quantity_concentration (required) =
None, decay_constant: a Nml2Quantity_time
(required) = None, shell_thickness: a
Nml2Quantity_length (required) = None,
extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: Standalone

DecayingPoolConcentrationModel – Model of an intracellular buffering mechanism for ion (currently hard
Coded to be calcium, due to requirement for iCa) which has a baseline level restingConc and tends to this
value with time course decayConstant. The ion is assumed to occupy a shell inside the membrane of thickness
shellThickness.

Parameters

• restingConc (concentration) –

• decayConstant (time) –

• shellThickness (length) –

178 Chapter 1. User guide

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

1.3. API documentation 179

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

180 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

DerivedVariable

class neuroml.nml.nml.DerivedVariable(name: a string (required) = None, dimension: a string (required) =
None, description: a string (optional) = None, exposure: a string
(optional) = None, value: a string (optional) = None, select: a
string (optional) = None, gds_collector_=None, **kwargs_)

Bases: NamedDimensionalVariable

DerivedVariable – LEMS ComponentType for DerivedVariable

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

1.3. API documentation 181

libNeuroML Documentation

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

182 Chapter 1. User guide

libNeuroML Documentation

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

1.3. API documentation 183

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

DistalDetails

class neuroml.nml.nml.DistalDetails(normalization_end: a double (required) = None,
gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

184 Chapter 1. User guide

libNeuroML Documentation

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

1.3. API documentation 185

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

186 Chapter 1. User guide

libNeuroML Documentation

DoubleSynapse

class neuroml.nml.nml.DoubleSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, synapse1: a NmlId
(required) = None, synapse2: a NmlId (required) = None,
synapse1_path: a string (required) = None, synapse2_path: a string
(required) = None, gds_collector_=None, **kwargs_)

Bases: BaseVoltageDepSynapse

DoubleSynapse – Synapse consisting of two independent synaptic mechanisms (e. g. AMPA-R and NMDA-R
), which can be easily colocated in connections

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

1.3. API documentation 187

libNeuroML Documentation

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

188 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Dynamics

class neuroml.nml.nml.Dynamics(StateVariable: list of StateVariable(s) (optional) = None, DerivedVariable:
list of DerivedVariable(s) (optional) = None, ConditionalDerivedVariable:
list of ConditionalDerivedVariable(s) (optional) = None, TimeDerivative:
list of TimeDerivative(s) (optional) = None, gds_collector_=None,
**kwargs_)

Bases: GeneratedsSuper

Dynamics – LEMS ComponentType for Dynamics

1.3. API documentation 189

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

190 Chapter 1. User guide

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

1.3. API documentation 191

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

EIF_cond_alpha_isfa_ista

class neuroml.nml.nml.EIF_cond_alpha_isfa_ista(id: a NmlId (required) = None, metaid: a MetaId
(optional) = None, notes: a string (optional) = None,
properties: list of Property(s) (optional) = None,
annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, cm: a
float (required) = None, i_offset: a float (required) =
None, tau_syn_E: a float (required) = None, tau_syn_I:
a float (required) = None, v_init: a float (required) =
None, tau_m: a float (required) = None, tau_refrac: a
float (required) = None, v_reset: a float (required) =
None, v_rest: a float (required) = None, v_thresh: a
float (required) = None, e_rev_E: a float (required) =
None, e_rev_I: a float (required) = None, a: a float
(required) = None, b: a float (required) = None,
delta_T: a float (required) = None, tau_w: a float
(required) = None, v_spike: a float (required) = None,
gds_collector_=None, **kwargs_)

Bases: EIF_cond_exp_isfa_ista

EIF_cond_alpha_isfa_ista – Adaptive exponential integrate and fire neuron according to Brette R and Gerstner
W (2005) with alpha-function-shaped post-synaptic conductance

192 Chapter 1. User guide

libNeuroML Documentation

Parameters

• v_spike (none) –

• delta_T (none) –

• tau_w (none) –

• a (none) –

• b (none) –

• e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

1.3. API documentation 193

libNeuroML Documentation

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

194 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 195

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

EIF_cond_exp_isfa_ista

class neuroml.nml.nml.EIF_cond_exp_isfa_ista(id: a NmlId (required) = None, metaid: a MetaId
(optional) = None, notes: a string (optional) = None,
properties: list of Property(s) (optional) = None,
annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, cm: a
float (required) = None, i_offset: a float (required) =
None, tau_syn_E: a float (required) = None, tau_syn_I: a
float (required) = None, v_init: a float (required) = None,
tau_m: a float (required) = None, tau_refrac: a float
(required) = None, v_reset: a float (required) = None,
v_rest: a float (required) = None, v_thresh: a float
(required) = None, e_rev_E: a float (required) = None,
e_rev_I: a float (required) = None, a: a float (required) =
None, b: a float (required) = None, delta_T: a float
(required) = None, tau_w: a float (required) = None,
v_spike: a float (required) = None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: basePyNNIaFCondCell

EIF_cond_exp_isfa_ista – Adaptive exponential integrate and fire neuron according to Brette R and Gerstner W
(2005) with exponentially-decaying post-synaptic conductance

Parameters

• v_spike (none) –

• delta_T (none) –

• tau_w (none) –

• a (none) –

• b (none) –

• e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

• cm (none) –

• i_offset (none) –

196 Chapter 1. User guide

libNeuroML Documentation

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

1.3. API documentation 197

libNeuroML Documentation

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

198 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ElectricalConnection

class neuroml.nml.nml.ElectricalConnection(id: a NonNegativeInteger (required) = None, neuro_lex_id:
a NeuroLexId (optional) = None, pre_cell: a string
(required) = None, pre_segment: a NonNegativeInteger
(optional) = '0', pre_fraction_along: a ZeroToOne (optional)
= '0.5', post_cell: a string (required) = None, post_segment:
a NonNegativeInteger (optional) = '0', post_fraction_along:
a ZeroToOne (optional) = '0.5', synapse: a NmlId (required)
= None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: BaseConnectionNewFormat

ElectricalConnection – To enable connections between populations through gap junctions.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

1.3. API documentation 199

libNeuroML Documentation

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

200 Chapter 1. User guide

libNeuroML Documentation

Raises
ValueError – if validation/checks fail

get_post_cell_id()

Get the ID of the post-synaptic cell

Returns
ID of post-synaptic cell

Return type
str

get_post_fraction_along()

Get post-synaptic fraction along information

get_post_info()

Get post-synaptic information summary

get_post_segment_id()

Get the ID of the post-synpatic segment

Returns
ID of post-synaptic segment.

Return type
str

get_pre_cell_id()

Get the ID of the pre-synaptic cell

Returns
ID of pre-synaptic cell

Return type
str

get_pre_fraction_along()

Get pre-synaptic fraction along information

get_pre_info()

Get pre-synaptic information summary

get_pre_segment_id()

Get the ID of the pre-synpatic segment

Returns
ID of pre-synaptic segment.

Return type
str

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

1.3. API documentation 201

libNeuroML Documentation

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

202 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ElectricalConnectionInstance

class neuroml.nml.nml.ElectricalConnectionInstance(id: a NonNegativeInteger (required) = None,
neuro_lex_id: a NeuroLexId (optional) = None,
pre_cell: a string (required) = None,
pre_segment: a NonNegativeInteger (optional) =
'0', pre_fraction_along: a ZeroToOne (optional) =
'0.5', post_cell: a string (required) = None,
post_segment: a NonNegativeInteger (optional) =
'0', post_fraction_along: a ZeroToOne (optional)
= '0.5', synapse: a NmlId (required) = None,
extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: ElectricalConnection

ElectricalConnectionInstance – To enable connections between populations through gap junctions. Populations
need to be of type populationList and contain instance and location elements.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

1.3. API documentation 203

libNeuroML Documentation

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

get_post_cell_id()

Get the ID of the post-synaptic cell

Returns
ID of post-synaptic cell

Return type
str

get_post_fraction_along()

Get post-synaptic fraction along information

get_post_info()

Get post-synaptic information summary

204 Chapter 1. User guide

libNeuroML Documentation

get_post_segment_id()

Get the ID of the post-synpatic segment

Returns
ID of post-synaptic segment.

Return type
str

get_pre_cell_id()

Get the ID of the pre-synaptic cell

Returns
ID of pre-synaptic cell

Return type
str

get_pre_fraction_along()

Get pre-synaptic fraction along information

get_pre_info()

Get pre-synaptic information summary

get_pre_segment_id()

Get the ID of the pre-synpatic segment

Returns
ID of pre-synaptic segment.

Return type
str

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,

1.3. API documentation 205

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

206 Chapter 1. User guide

libNeuroML Documentation

ElectricalConnectionInstanceW

class neuroml.nml.nml.ElectricalConnectionInstanceW(id: a NonNegativeInteger (required) = None,
neuro_lex_id: a NeuroLexId (optional) = None,
pre_cell: a string (required) = None,
pre_segment: a NonNegativeInteger (optional) =
'0', pre_fraction_along: a ZeroToOne (optional)
= '0.5', post_cell: a string (required) = None,
post_segment: a NonNegativeInteger (optional)
= '0', post_fraction_along: a ZeroToOne
(optional) = '0.5', synapse: a NmlId (required) =
None, weight: a float (required) = None,
gds_collector_=None, **kwargs_)

Bases: ElectricalConnectionInstance

ElectricalConnectionInstanceW – To enable connections between populations through gap junctions. Popula-
tions need to be of type populationList and contain instance and location elements. Includes setting of weight
for the connection

Parameters
weight (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

1.3. API documentation 207

libNeuroML Documentation

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

get_post_cell_id()

Get the ID of the post-synaptic cell

Returns
ID of post-synaptic cell

Return type
str

get_post_fraction_along()

Get post-synaptic fraction along information

get_post_info()

Get post-synaptic information summary

get_post_segment_id()

Get the ID of the post-synpatic segment

Returns
ID of post-synaptic segment.

Return type
str

get_pre_cell_id()

Get the ID of the pre-synaptic cell

Returns
ID of pre-synaptic cell

Return type
str

208 Chapter 1. User guide

libNeuroML Documentation

get_pre_fraction_along()

Get pre-synaptic fraction along information

get_pre_info()

Get pre-synaptic information summary

get_pre_segment_id()

Get the ID of the pre-synpatic segment

Returns
ID of pre-synaptic segment.

Return type
str

get_weight()

Get the weight of the connection

If a weight is not set (or is set to None), returns the default value of 1.0.

Returns
weight of connection or 1.0 if not set

Return type
float

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

1.3. API documentation 209

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

210 Chapter 1. User guide

libNeuroML Documentation

ElectricalProjection

class neuroml.nml.nml.ElectricalProjection(id: a NmlId (required) = None, presynaptic_population: a
NmlId (required) = None, postsynaptic_population: a NmlId
(required) = None, electrical_connections: list of
ElectricalConnection(s) (optional) = None,
electrical_connection_instances: list of
ElectricalConnectionInstance(s) (optional) = None,
electrical_connection_instance_ws: list of
ElectricalConnectionInstanceW(s) (optional) = None,
gds_collector_=None, **kwargs_)

Bases: BaseProjection

ElectricalProjection – A projection between presynapticPopulation to another postsynapticPopulation
through gap junctions.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

1.3. API documentation 211

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

exportHdf5(h5file, h5Group)
Export to HDF5 file.

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

212 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 213

libNeuroML Documentation

ExpCondSynapse

class neuroml.nml.nml.ExpCondSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, tau_syn: a float
(required) = None, e_rev: a float (required) = None,
gds_collector_=None, **kwargs_)

Bases: BasePynnSynapse

ExpCondSynapse – Conductance based synapse with instantaneous rise and single exponential decay (with time
constant tau_syn)

Parameters

• e_rev (none) –

• tau_syn (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

214 Chapter 1. User guide

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

1.3. API documentation 215

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

216 Chapter 1. User guide

libNeuroML Documentation

ExpCurrSynapse

class neuroml.nml.nml.ExpCurrSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, tau_syn: a float
(required) = None, gds_collector_=None, **kwargs_)

Bases: BasePynnSynapse

ExpCurrSynapse – Current based synapse with instantaneous rise and single exponential decay (with time con-
stant tau_syn)

Parameters
tau_syn (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

1.3. API documentation 217

libNeuroML Documentation

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

218 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ExpOneSynapse

class neuroml.nml.nml.ExpOneSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, gbase: a
Nml2Quantity_conductance (required) = None, erev: a
Nml2Quantity_voltage (required) = None, tau_decay: a
Nml2Quantity_time (required) = None, gds_collector_=None,
**kwargs_)

1.3. API documentation 219

libNeuroML Documentation

Bases: BaseConductanceBasedSynapse

ExpOneSynapse – Ohmic synapse model whose conductance rises instantaneously by (gbase * weight) on
receiving an event, and which decays exponentially to zero with time course tauDecay

Parameters

• tauDecay (time) – Time course of decay

• gbase (conductance) – Baseline conductance, generally the maximum conductance fol-
lowing a single spike

• erev (voltage) – Reversal potential of the synapse

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

220 Chapter 1. User guide

libNeuroML Documentation

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

1.3. API documentation 221

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ExpThreeSynapse

222 Chapter 1. User guide

libNeuroML Documentation

class neuroml.nml.nml.ExpThreeSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation (optional)
= None, neuro_lex_id: a NeuroLexId (optional) = None, gbase1: a
Nml2Quantity_conductance (required) = None, gbase2: a
Nml2Quantity_conductance (required) = None, erev: a
Nml2Quantity_voltage (required) = None, tau_decay1: a
Nml2Quantity_time (required) = None, tau_decay2: a
Nml2Quantity_time (required) = None, tau_rise: a
Nml2Quantity_time (required) = None, gds_collector_=None,
**kwargs_)

Bases: BaseConductanceBasedSynapseTwo

ExpThreeSynapse – Ohmic synapse similar to expTwoSynapse but consisting of two components that can differ
in decay times and max conductances but share the same rise time.

Parameters

• tauRise (time) –

• tauDecay1 (time) –

• tauDecay2 (time) –

• gbase1 (conductance) – Baseline conductance 1

• gbase2 (conductance) – Baseline conductance 2

• erev (voltage) – Reversal potential of the synapse

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

1.3. API documentation 223

libNeuroML Documentation

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

224 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 225

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

ExpTwoSynapse

class neuroml.nml.nml.ExpTwoSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, gbase: a
Nml2Quantity_conductance (required) = None, erev: a
Nml2Quantity_voltage (required) = None, tau_decay: a
Nml2Quantity_time (required) = None, tau_rise: a
Nml2Quantity_time (required) = None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: BaseConductanceBasedSynapse

ExpTwoSynapse – Ohmic synapse model whose conductance waveform on receiving an event has a rise time of
tauRise and a decay time of tauDecay. Max conductance reached during this time (assuming zero conductance
before) is gbase * weight.

Parameters

• tauRise (time) –

• tauDecay (time) –

• gbase (conductance) – Baseline conductance, generally the maximum conductance fol-
lowing a single spike

• erev (voltage) – Reversal potential of the synapse

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

226 Chapter 1. User guide

libNeuroML Documentation

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

1.3. API documentation 227

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

228 Chapter 1. User guide

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

ExplicitInput

class neuroml.nml.nml.ExplicitInput(target: a string (required) = None, input: a string (required) = None,
destination: a string (optional) = None, gds_collector_=None,
**kwargs_)

Bases: BaseWithoutId

ExplicitInput – An explicit input (anything which extends basePointCurrent) to a target cell in a population

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

1.3. API documentation 229

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

get_fraction_along()

Get fraction along.

Returns 0.5 is fraction_along was not set.

get_segment_id()

Get the ID of the segment.

Returns 0 if segment_id was not set.

get_target_cell_id()

Get target cell ID

get_target_population()

Get target population.

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

230 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 231

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

Exposure

class neuroml.nml.nml.Exposure(name: a string (required) = None, dimension: a string (required) = None,
description: a string (optional) = None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

Exposure – LEMS Exposure (ComponentType property)

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

232 Chapter 1. User guide

libNeuroML Documentation

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

1.3. API documentation 233

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ExtracellularProperties

class neuroml.nml.nml.ExtracellularProperties(id: a NmlId (required) = None, species: list of Species(s)
(optional) = None, gds_collector_=None, **kwargs_)

Bases: Base

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

234 Chapter 1. User guide

libNeuroML Documentation

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

1.3. API documentation 235

libNeuroML Documentation

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an

236 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ExtracellularPropertiesLocal

class neuroml.nml.nml.ExtracellularPropertiesLocal(id: a NmlId (required) = None, species: list of
Species(s) (optional) = None,
gds_collector_=None, **kwargs_)

Bases: Base

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

1.3. API documentation 237

libNeuroML Documentation

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

238 Chapter 1. User guide

libNeuroML Documentation

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

1.3. API documentation 239

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

FitzHughNagumo1969Cell

class neuroml.nml.nml.FitzHughNagumo1969Cell(id: a NmlId (required) = None, metaid: a MetaId
(optional) = None, notes: a string (optional) = None,
properties: list of Property(s) (optional) = None,
annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, a: a
Nml2Quantity_none (required) = None, b: a
Nml2Quantity_none (required) = None, I: a
Nml2Quantity_none (required) = None, phi: a
Nml2Quantity_none (required) = None, V0: a
Nml2Quantity_none (required) = None, W0: a
Nml2Quantity_none (required) = None,
gds_collector_=None, **kwargs_)

Bases: BaseCell

FitzHughNagumo1969Cell – The Fitzhugh Nagumo model is a two-dimensional simplification of the Hodgkin-
Huxley model of spike generation in squid giant axons. This system was suggested by FitzHugh (FitzHugh R.
[1961]: Impulses and physiological states in theoretical models of nerve membrane. Biophysical J. 1:445-466),
who called it ” Bonhoeffer-van der Pol model “, and the equivalent circuit by Nagumo et al. (Nagumo J. , Arimoto
S. , and Yoshizawa S. [1962] An active pulse transmission line simulating nerve axon. Proc IRE. 50:2061-2070.
1962). This version corresponds to the one described in FitzHugh R. [1969]: Mathematical models of excitation
and propagation in nerve. Chapter 1 (pp. 1-85 in H. P. Schwan, ed. Biological Engineering, McGraw-Hill Book
Co. , N. Y.)

Parameters

• a (none) –

• b (none) –

• I (none) – plays the role of an external injected current

• phi (none) –

• V0 (none) –

• W0 (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

240 Chapter 1. User guide

libNeuroML Documentation

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

1.3. API documentation 241

libNeuroML Documentation

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

242 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

FitzHughNagumoCell

class neuroml.nml.nml.FitzHughNagumoCell(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, neuro_lex_id: a NeuroLexId (optional) =
None, I: a Nml2Quantity_none (required) = None,
gds_collector_=None, **kwargs_)

Bases: BaseCell

FitzHughNagumoCell – Simple dimensionless model of spiking cell from FitzHugh and Nagumo. Superseded
by fitzHughNagumo1969Cell (See https://github.com/NeuroML/NeuroML2/issues/42)

Parameters
I (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

1.3. API documentation 243

https://github.com/NeuroML/NeuroML2/issues/42

libNeuroML Documentation

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

244 Chapter 1. User guide

libNeuroML Documentation

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

1.3. API documentation 245

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

FixedFactorConcentrationModel

class neuroml.nml.nml.FixedFactorConcentrationModel(id: a NmlId (required) = None, metaid: a MetaId
(optional) = None, notes: a string (optional) =
None, properties: list of Property(s) (optional) =
None, annotation: a Annotation (optional) =
None, ion: a NmlId (required) = None,
resting_conc: a Nml2Quantity_concentration
(required) = None, decay_constant: a
Nml2Quantity_time (required) = None, rho: a
Nml2Quantity_rhoFactor (required) = None,
gds_collector_=None, **kwargs_)

Bases: Standalone

FixedFactorConcentrationModel – Model of buffering of concentration of an ion (currently hard coded to be
calcium, due to requirement for iCa) which has a baseline level restingConc and tends to this value with time
course decayConstant. A fixed factor rho is used to scale the incoming current independently of the size of the
compartment to produce a concentration change.

Parameters

• restingConc (concentration) –

• decayConstant (time) –

• rho (rho_factor) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

246 Chapter 1. User guide

libNeuroML Documentation

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

1.3. API documentation 247

libNeuroML Documentation

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

248 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ForwardTransition

class neuroml.nml.nml.ForwardTransition(id: a NmlId (required) = None, from_: a NmlId (required) =
None, to: a NmlId (required) = None, anytypeobjs_=None,
gds_collector_=None, **kwargs_)

Bases: Base

ForwardTransition – A forward only KSTransition for a gateKS which specifies a rate (type baseHHRate)
which follows one of the standard Hodgkin Huxley forms (e. g. HHExpRate , HHSigmoidRate , HHExpLin-
earRate

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

1.3. API documentation 249

libNeuroML Documentation

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

250 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 251

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

GapJunction

class neuroml.nml.nml.GapJunction(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, conductance: a
Nml2Quantity_conductance (required) = None, gds_collector_=None,
**kwargs_)

Bases: BaseSynapse

GapJunction – Gap junction/single electrical connection

Parameters
conductance (conductance) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

252 Chapter 1. User guide

libNeuroML Documentation

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

1.3. API documentation 253

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

254 Chapter 1. User guide

libNeuroML Documentation

GateFractional

class neuroml.nml.nml.GateFractional(id: a NmlId (required) = None, instances: a PositiveInteger
(required) = None, notes: a string (optional) = None, q10_settings:
a Q10Settings (optional) = None, sub_gates: list of
GateFractionalSubgate(s) (required) = None, gds_collector_=None,
**kwargs_)

Bases: Base

GateFractional – Gate composed of subgates contributing with fractional conductance

Parameters
instances (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

1.3. API documentation 255

libNeuroML Documentation

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

256 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

GateFractionalSubgate

class neuroml.nml.nml.GateFractionalSubgate(id: a NmlId (required) = None, fractional_conductance: a
Nml2Quantity_none (required) = None, notes: a string
(optional) = None, q10_settings: a Q10Settings (optional)
= None, steady_state: a HHVariable (required) = None,
time_course: a HHTime (required) = None,
gds_collector_=None, **kwargs_)

Bases: Base

1.3. API documentation 257

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

258 Chapter 1. User guide

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

1.3. API documentation 259

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

GateHHInstantaneous

class neuroml.nml.nml.GateHHInstantaneous(id: a NmlId (required) = None, instances: a PositiveInteger
(required) = None, notes: a string (optional) = None,
steady_state: a HHVariable (required) = None,
gds_collector_=None, **kwargs_)

Bases: Base

GateHHInstantaneous – Gate which follows the general Hodgkin Huxley formalism but is instantaneous, so tau
= 0 and gate follows exactly inf value

Parameters
instances (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

260 Chapter 1. User guide

libNeuroML Documentation

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child

1.3. API documentation 261

libNeuroML Documentation

elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

262 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

GateHHRates

class neuroml.nml.nml.GateHHRates(id: a NmlId (required) = None, instances: a PositiveInteger (required) =
None, notes: a string (optional) = None, q10_settings: a Q10Settings
(optional) = None, forward_rate: a HHRate (required) = None,
reverse_rate: a HHRate (required) = None, gds_collector_=None,
**kwargs_)

Bases: Base

GateHHRates – Gate which follows the general Hodgkin Huxley formalism

Parameters
instances (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

1.3. API documentation 263

libNeuroML Documentation

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

264 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 265

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

GateHHRatesInf

class neuroml.nml.nml.GateHHRatesInf(id: a NmlId (required) = None, instances: a PositiveInteger
(required) = None, notes: a string (optional) = None, q10_settings:
a Q10Settings (optional) = None, forward_rate: a HHRate
(required) = None, reverse_rate: a HHRate (required) = None,
steady_state: a HHVariable (required) = None,
gds_collector_=None, **kwargs_)

Bases: Base

GateHHRatesInf – Gate which follows the general Hodgkin Huxley formalism

Parameters
instances (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

266 Chapter 1. User guide

libNeuroML Documentation

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

1.3. API documentation 267

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

268 Chapter 1. User guide

libNeuroML Documentation

GateHHRatesTau

class neuroml.nml.nml.GateHHRatesTau(id: a NmlId (required) = None, instances: a PositiveInteger
(required) = None, notes: a string (optional) = None, q10_settings:
a Q10Settings (optional) = None, forward_rate: a HHRate
(required) = None, reverse_rate: a HHRate (required) = None,
time_course: a HHTime (required) = None, gds_collector_=None,
**kwargs_)

Bases: Base

GateHHRatesTau – Gate which follows the general Hodgkin Huxley formalism

Parameters
instances (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

1.3. API documentation 269

libNeuroML Documentation

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

270 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

GateHHRatesTauInf

class neuroml.nml.nml.GateHHRatesTauInf(id: a NmlId (required) = None, instances: a PositiveInteger
(required) = None, notes: a string (optional) = None,
q10_settings: a Q10Settings (optional) = None, forward_rate: a
HHRate (required) = None, reverse_rate: a HHRate (required)
= None, time_course: a HHTime (required) = None,
steady_state: a HHVariable (required) = None,
gds_collector_=None, **kwargs_)

1.3. API documentation 271

libNeuroML Documentation

Bases: Base

GateHHRatesTauInf – Gate which follows the general Hodgkin Huxley formalism

Parameters
instances (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

272 Chapter 1. User guide

libNeuroML Documentation

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

1.3. API documentation 273

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

GateHHTauInf

class neuroml.nml.nml.GateHHTauInf(id: a NmlId (required) = None, instances: a PositiveInteger (required)
= None, notes: a string (optional) = None, q10_settings: a Q10Settings
(optional) = None, time_course: a HHTime (required) = None,
steady_state: a HHVariable (required) = None, gds_collector_=None,
**kwargs_)

Bases: Base

GateHHTauInf – Gate which follows the general Hodgkin Huxley formalism

Parameters
instances (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

274 Chapter 1. User guide

libNeuroML Documentation

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

1.3. API documentation 275

libNeuroML Documentation

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

276 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

GateHHUndetermined

class neuroml.nml.nml.GateHHUndetermined(id: a NmlId (required) = None, instances: a PositiveInteger
(required) = None, type: a gateTypes (required) = None, notes:
a string (optional) = None, q10_settings: a Q10Settings
(optional) = None, forward_rate: a HHRate (optional) = None,
reverse_rate: a HHRate (optional) = None, time_course: a
HHTime (optional) = None, steady_state: a HHVariable
(optional) = None, sub_gates: list of GateFractionalSubgate(s)
(optional) = None, gds_collector_=None, **kwargs_)

Bases: Base

GateHHUndetermined – Note all sub elements for gateHHrates, gateHHratesTau, gateFractional etc. allowed
here. Which are valid should be constrained by what type is set

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

1.3. API documentation 277

libNeuroML Documentation

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

278 Chapter 1. User guide

libNeuroML Documentation

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

1.3. API documentation 279

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

GateKS

class neuroml.nml.nml.GateKS(id: a NmlId (required) = None, instances: a PositiveInteger (required) = None,
notes: a string (optional) = None, q10_settings: a Q10Settings (optional) =
None, closed_states: list of ClosedState(s) (required) = None, open_states: list
of OpenState(s) (required) = None, forward_transition: list of
ForwardTransition(s) (required) = None, reverse_transition: list of
ReverseTransition(s) (required) = None, tau_inf_transition: list of
TauInfTransition(s) (required) = None, gds_collector_=None, **kwargs_)

Bases: Base

GateKS – A gate which consists of multiple KSState s and KSTransition s giving the rates of transition between
them

Parameters
instances (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

280 Chapter 1. User guide

libNeuroML Documentation

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

1.3. API documentation 281

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

282 Chapter 1. User guide

libNeuroML Documentation

Returns
None

Return type
None

Raises
ValueError – if component is invalid

GeneratedsSuper

class neuroml.nml.nml.GeneratedsSuper

Bases: GeneratedsSuperSuper

GradedSynapse

class neuroml.nml.nml.GradedSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, conductance: a
Nml2Quantity_conductance (required) = None, delta: a
Nml2Quantity_voltage (required) = None, Vth: a
Nml2Quantity_voltage (required) = None, k: a Nml2Quantity_pertime
(required) = None, erev: a Nml2Quantity_voltage (required) = None,
gds_collector_=None, **kwargs_)

Bases: BaseSynapse

GradedSynapse – Graded/analog synapse. Based on synapse in Methods of http://www. na-
ture.com/neuro/journal/v7/n12/abs/nn1352.html

Parameters

• conductance (conductance) –

• delta (voltage) – Slope of the activation curve

• k (per_time) – Rate constant for transmitter-receptor dissociation rate

• Vth (voltage) – The half-activation voltage of the synapse

• erev (voltage) – The reversal potential of the synapse

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

1.3. API documentation 283

http://www

libNeuroML Documentation

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

284 Chapter 1. User guide

libNeuroML Documentation

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

1.3. API documentation 285

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

GridLayout

class neuroml.nml.nml.GridLayout(x_size: a nonNegativeInteger (optional) = None, y_size: a
nonNegativeInteger (optional) = None, z_size: a nonNegativeInteger
(optional) = None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

286 Chapter 1. User guide

libNeuroML Documentation

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,

1.3. API documentation 287

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

288 Chapter 1. User guide

libNeuroML Documentation

HHRate

class neuroml.nml.nml.HHRate(type: a NmlId (required) = None, rate: a Nml2Quantity_pertime (optional) =
None, midpoint: a Nml2Quantity_voltage (optional) = None, scale: a
Nml2Quantity_voltage (optional) = None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

1.3. API documentation 289

libNeuroML Documentation

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

290 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

HHTime

class neuroml.nml.nml.HHTime(type: a NmlId (required) = None, rate: a Nml2Quantity_time (optional) =
None, midpoint: a Nml2Quantity_voltage (optional) = None, scale: a
Nml2Quantity_voltage (optional) = None, tau: a Nml2Quantity_time
(optional) = None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

1.3. API documentation 291

libNeuroML Documentation

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child

292 Chapter 1. User guide

libNeuroML Documentation

elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

1.3. API documentation 293

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

HHVariable

class neuroml.nml.nml.HHVariable(type: a NmlId (required) = None, rate: a float (optional) = None,
midpoint: a Nml2Quantity_voltage (optional) = None, scale: a
Nml2Quantity_voltage (optional) = None, gds_collector_=None,
**kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

294 Chapter 1. User guide

libNeuroML Documentation

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

1.3. API documentation 295

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

296 Chapter 1. User guide

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

HH_cond_exp

class neuroml.nml.nml.HH_cond_exp(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required) =
None, i_offset: a float (required) = None, tau_syn_E: a float (required) =
None, tau_syn_I: a float (required) = None, v_init: a float (required) =
None, v_offset: a float (required) = None, e_rev_E: a float (required) =
None, e_rev_I: a float (required) = None, e_rev_K: a float (required) =
None, e_rev_Na: a float (required) = None, e_rev_leak: a float
(required) = None, g_leak: a float (required) = None, gbar_K: a float
(required) = None, gbar_Na: a float (required) = None,
gds_collector_=None, **kwargs_)

Bases: basePyNNCell

HH_cond_exp – Single-compartment Hodgkin-Huxley-type neuron with transient sodium and delayed-rectifier
potassium currents using the ion channel models from Traub.

Parameters

• gbar_K (none) –

• gbar_Na (none) –

• g_leak (none) –

• e_rev_K (none) –

• e_rev_Na (none) –

• e_rev_leak (none) –

• v_offset (none) –

• e_rev_E (none) –

• e_rev_I (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

1.3. API documentation 297

libNeuroML Documentation

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

298 Chapter 1. User guide

libNeuroML Documentation

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

1.3. API documentation 299

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

IF_cond_alpha

class neuroml.nml.nml.IF_cond_alpha(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required)
= None, i_offset: a float (required) = None, tau_syn_E: a float
(required) = None, tau_syn_I: a float (required) = None, v_init: a
float (required) = None, tau_m: a float (required) = None, tau_refrac:
a float (required) = None, v_reset: a float (required) = None, v_rest: a
float (required) = None, v_thresh: a float (required) = None, e_rev_E:
a float (required) = None, e_rev_I: a float (required) = None,
gds_collector_=None, **kwargs_)

Bases: basePyNNIaFCondCell

IF_cond_alpha – Leaky integrate and fire model with fixed threshold and alpha-function-shaped post-synaptic
conductance

Parameters

• e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

300 Chapter 1. User guide

libNeuroML Documentation

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

1.3. API documentation 301

libNeuroML Documentation

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

302 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

IF_cond_exp

1.3. API documentation 303

libNeuroML Documentation

class neuroml.nml.nml.IF_cond_exp(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required) =
None, i_offset: a float (required) = None, tau_syn_E: a float (required) =
None, tau_syn_I: a float (required) = None, v_init: a float (required) =
None, tau_m: a float (required) = None, tau_refrac: a float (required) =
None, v_reset: a float (required) = None, v_rest: a float (required) =
None, v_thresh: a float (required) = None, e_rev_E: a float (required) =
None, e_rev_I: a float (required) = None, gds_collector_=None,
**kwargs_)

Bases: basePyNNIaFCondCell

IF_cond_exp – Leaky integrate and fire model with fixed threshold and exponentially-decaying post-synaptic
conductance

Parameters

• e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

304 Chapter 1. User guide

libNeuroML Documentation

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

1.3. API documentation 305

libNeuroML Documentation

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

306 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

IF_curr_alpha

class neuroml.nml.nml.IF_curr_alpha(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required)
= None, i_offset: a float (required) = None, tau_syn_E: a float
(required) = None, tau_syn_I: a float (required) = None, v_init: a
float (required) = None, tau_m: a float (required) = None, tau_refrac:
a float (required) = None, v_reset: a float (required) = None, v_rest: a
float (required) = None, v_thresh: a float (required) = None,
gds_collector_=None, **kwargs_)

Bases: basePyNNIaFCell

IF_curr_alpha – Leaky integrate and fire model with fixed threshold and alpha-function-shaped post-synaptic
current

Parameters

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

1.3. API documentation 307

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

308 Chapter 1. User guide

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

1.3. API documentation 309

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

IF_curr_exp

class neuroml.nml.nml.IF_curr_exp(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required) =
None, i_offset: a float (required) = None, tau_syn_E: a float (required) =
None, tau_syn_I: a float (required) = None, v_init: a float (required) =
None, tau_m: a float (required) = None, tau_refrac: a float (required) =
None, v_reset: a float (required) = None, v_rest: a float (required) =
None, v_thresh: a float (required) = None, gds_collector_=None,
**kwargs_)

Bases: basePyNNIaFCell

IF_curr_exp – Leaky integrate and fire model with fixed threshold and decaying-exponential post-synaptic cur-
rent

Parameters

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

310 Chapter 1. User guide

libNeuroML Documentation

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

1.3. API documentation 311

libNeuroML Documentation

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

312 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

IafCell

class neuroml.nml.nml.IafCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a
string (optional) = None, properties: list of Property(s) (optional) = None,
annotation: a Annotation (optional) = None, neuro_lex_id: a NeuroLexId
(optional) = None, leak_reversal: a Nml2Quantity_voltage (required) =
None, thresh: a Nml2Quantity_voltage (required) = None, reset: a
Nml2Quantity_voltage (required) = None, C: a Nml2Quantity_capacitance
(required) = None, leak_conductance: a Nml2Quantity_conductance
(required) = None, extensiontype_=None, gds_collector_=None, **kwargs_)

1.3. API documentation 313

libNeuroML Documentation

Bases: BaseCell

IafCell – Integrate and fire cell with capacitance C, leakConductance and leakReversal

Parameters

• leakConductance (conductance) –

• leakReversal (voltage) –

• thresh (voltage) –

• reset (voltage) –

• C (capacitance) – Total capacitance of the cell membrane

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

314 Chapter 1. User guide

libNeuroML Documentation

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

1.3. API documentation 315

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

IafRefCell

316 Chapter 1. User guide

libNeuroML Documentation

class neuroml.nml.nml.IafRefCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, leak_reversal: a
Nml2Quantity_voltage (required) = None, thresh: a
Nml2Quantity_voltage (required) = None, reset: a Nml2Quantity_voltage
(required) = None, C: a Nml2Quantity_capacitance (required) = None,
leak_conductance: a Nml2Quantity_conductance (required) = None,
refract: a Nml2Quantity_time (required) = None, gds_collector_=None,
**kwargs_)

Bases: IafCell

IafRefCell – Integrate and fire cell with capacitance C, leakConductance, leakReversal and refractory period
refract

Parameters

• refract (time) –

• leakConductance (conductance) –

• leakReversal (voltage) –

• thresh (voltage) –

• reset (voltage) –

• C (capacitance) – Total capacitance of the cell membrane

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

1.3. API documentation 317

libNeuroML Documentation

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

318 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

1.3. API documentation 319

libNeuroML Documentation

Raises
ValueError – if component is invalid

IafTauCell

class neuroml.nml.nml.IafTauCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, leak_reversal: a
Nml2Quantity_voltage (required) = None, thresh: a
Nml2Quantity_voltage (required) = None, reset: a Nml2Quantity_voltage
(required) = None, tau: a Nml2Quantity_time (required) = None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: BaseCell

IafTauCell – Integrate and fire cell which returns to its leak reversal potential of leakReversal with a time constant
tau

Parameters

• leakReversal (voltage) –

• tau (time) –

• thresh (voltage) – The membrane potential at which to emit a spiking event and reset
voltage

• reset (voltage) – The value the membrane potential is reset to on spiking

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

320 Chapter 1. User guide

libNeuroML Documentation

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

1.3. API documentation 321

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

322 Chapter 1. User guide

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

IafTauRefCell

class neuroml.nml.nml.IafTauRefCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, leak_reversal: a
Nml2Quantity_voltage (required) = None, thresh: a
Nml2Quantity_voltage (required) = None, reset: a
Nml2Quantity_voltage (required) = None, tau: a Nml2Quantity_time
(required) = None, refract: a Nml2Quantity_time (required) = None,
gds_collector_=None, **kwargs_)

Bases: IafTauCell

IafTauRefCell – Integrate and fire cell which returns to its leak reversal potential of leakReversal with a time
course tau. It has a refractory period of refract after spiking

Parameters

• refract (time) –

• leakReversal (voltage) –

• tau (time) –

• thresh (voltage) – The membrane potential at which to emit a spiking event and reset
voltage

• reset (voltage) – The value the membrane potential is reset to on spiking

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

1.3. API documentation 323

libNeuroML Documentation

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

324 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 325

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

Include

class neuroml.nml.nml.Include(segment_groups: a NmlId (required) = None, gds_collector_=None,
**kwargs_)

Bases: BaseWithoutId

Include – Include all members of another segmentGroup in this group

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

326 Chapter 1. User guide

libNeuroML Documentation

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

1.3. API documentation 327

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

IncludeType

class neuroml.nml.nml.IncludeType(href: a anyURI (required) = None, gds_collector_=None, **kwargs_)
Bases: GeneratedsSuper

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

328 Chapter 1. User guide

libNeuroML Documentation

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

1.3. API documentation 329

libNeuroML Documentation

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

330 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

InhomogeneousParameter

class neuroml.nml.nml.InhomogeneousParameter(id: a NmlId (required) = None, variable: a string
(required) = None, metric: a Metric (required) = None,
proximal: a ProximalDetails (optional) = None, distal: a
DistalDetails (optional) = None, gds_collector_=None,
**kwargs_)

Bases: Base

InhomogeneousParameter – An inhomogeneous parameter specified across the segmentGroup (see variablePa-
rameter for usage).

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

1.3. API documentation 331

libNeuroML Documentation

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

332 Chapter 1. User guide

libNeuroML Documentation

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

1.3. API documentation 333

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

InhomogeneousValue

class neuroml.nml.nml.InhomogeneousValue(inhomogeneous_parameters: a string (required) = None, value:
a string (required) = None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

InhomogeneousValue – Specifies the value of an inhomogeneousParameter. For usage see variableParameter

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

334 Chapter 1. User guide

libNeuroML Documentation

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

1.3. API documentation 335

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

336 Chapter 1. User guide

libNeuroML Documentation

InitMembPotential

class neuroml.nml.nml.InitMembPotential(value: a Nml2Quantity_voltage (required) = None,
segment_groups: a NmlId (optional) = 'all',
gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

InitMembPotential – Explicitly set initial membrane potential for the cell

Parameters
value (voltage) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

1.3. API documentation 337

libNeuroML Documentation

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

338 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Input

class neuroml.nml.nml.Input(id: a NonNegativeInteger (required) = None, target: a string (required) = None,
destination: a NmlId (required) = None, segment_id: a NonNegativeInteger
(optional) = None, fraction_along: a ZeroToOne (optional) = None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: BaseNonNegativeIntegerId

Input – Specifies a single input to a target, optionally giving the segmentId (default 0) and fractionAlong the
segment (default 0. 5).

1.3. API documentation 339

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

340 Chapter 1. User guide

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

get_fraction_along()

Get fraction along.

Returns 0.5 is fraction_along was not set.

get_segment_id()

Get the ID of the segment.

Returns 0 if segment_id was not set.

get_target_cell_id()

Get ID of target cell.

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

1.3. API documentation 341

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

InputList

class neuroml.nml.nml.InputList(id: a NonNegativeInteger (required) = None, populations: a NmlId
(required) = None, component: a NmlId (required) = None, input: list of
Input(s) (optional) = None, input_ws: list of InputW(s) (optional) = None,
gds_collector_=None, **kwargs_)

Bases: Base

InputList – An explicit list of input s to a population.

342 Chapter 1. User guide

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

1.3. API documentation 343

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

exportHdf5(h5file, h5Group)
Export to HDF5 file.

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids

344 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

InputW

class neuroml.nml.nml.InputW(id: a NonNegativeInteger (required) = None, target: a string (required) = None,
destination: a NmlId (required) = None, segment_id: a NonNegativeInteger
(optional) = None, fraction_along: a ZeroToOne (optional) = None, weight: a
float (required) = None, gds_collector_=None, **kwargs_)

Bases: Input

InputW – Specifies input lists. Can set weight to scale individual inputs.

Parameters
weight (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

1.3. API documentation 345

libNeuroML Documentation

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

get_fraction_along()

Get fraction along.

Returns 0.5 is fraction_along was not set.

346 Chapter 1. User guide

libNeuroML Documentation

get_segment_id()

Get the ID of the segment.

Returns 0 if segment_id was not set.

get_target_cell_id()

Get ID of target cell.

get_weight()

Get weight.

If weight is not set, the default value of 1.0 is returned.

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

1.3. API documentation 347

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Instance

class neuroml.nml.nml.Instance(id: a nonNegativeInteger (optional) = None, i: a nonNegativeInteger
(optional) = None, j: a nonNegativeInteger (optional) = None, k: a
nonNegativeInteger (optional) = None, location: a Location (required) =
None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

Instance – Specifies a single instance of a component in a population (placed at location).

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

348 Chapter 1. User guide

libNeuroML Documentation

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

1.3. API documentation 349

libNeuroML Documentation

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

350 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

InstanceRequirement

class neuroml.nml.nml.InstanceRequirement(name: a string (required) = None, type: a string (required) =
None, gds_collector_=None, **kwargs_)

Bases: GeneratedsSuper

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

1.3. API documentation 351

libNeuroML Documentation

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

352 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 353

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

IntracellularProperties

class neuroml.nml.nml.IntracellularProperties(species: list of Species(s) (optional) = None,
resistivities: list of Resistivity(s) (optional) = None,
extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: BaseWithoutId

IntracellularProperties – Biophysical properties related to the intracellular space within the cell , such as the
resistivity and the list of ionic species present. caConc and caConcExt are explicitly exposed here to facilitate
accessing these values from other Components, even though caConcExt is clearly not an intracellular property

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

354 Chapter 1. User guide

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

1.3. API documentation 355

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

356 Chapter 1. User guide

libNeuroML Documentation

IntracellularProperties2CaPools

class neuroml.nml.nml.IntracellularProperties2CaPools(species: list of Species(s) (optional) = None,
resistivities: list of Resistivity(s) (optional) =
None, gds_collector_=None, **kwargs_)

Bases: IntracellularProperties

IntracellularProperties2CaPools – Variant of intracellularProperties with 2 independent Ca pools

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need

1.3. API documentation 357

libNeuroML Documentation

to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

358 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 359

libNeuroML Documentation

IonChannel

class neuroml.nml.nml.IonChannel(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None,
q10_conductance_scalings: list of Q10ConductanceScaling(s) (optional)
= None, species: a NmlId (optional) = None, type: a channelTypes
(optional) = None, conductance: a Nml2Quantity_conductance (optional)
= None, gates: list of GateHHUndetermined(s) (optional) = None,
gate_hh_rates: list of GateHHRates(s) (optional) = None,
gate_h_hrates_taus: list of GateHHRatesTau(s) (optional) = None,
gate_hh_tau_infs: list of GateHHTauInf(s) (optional) = None,
gate_h_hrates_infs: list of GateHHRatesInf(s) (optional) = None,
gate_h_hrates_tau_infs: list of GateHHRatesTauInf(s) (optional) = None,
gate_hh_instantaneouses: list of GateHHInstantaneous(s) (optional) =
None, gate_fractionals: list of GateFractional(s) (optional) = None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: IonChannelScalable

IonChannel – Note ionChannel and ionChannelHH are currently functionally identical. This is needed since
many existing examples use ionChannel, some use ionChannelHH. NeuroML v2beta4 should remove one of
these, probably ionChannelHH.

Parameters
conductance (conductance) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

360 Chapter 1. User guide

libNeuroML Documentation

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

1.3. API documentation 361

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

362 Chapter 1. User guide

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

IonChannelHH

class neuroml.nml.nml.IonChannelHH(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None,
q10_conductance_scalings: list of Q10ConductanceScaling(s)
(optional) = None, species: a NmlId (optional) = None, type: a
channelTypes (optional) = None, conductance: a
Nml2Quantity_conductance (optional) = None, gates: list of
GateHHUndetermined(s) (optional) = None, gate_hh_rates: list of
GateHHRates(s) (optional) = None, gate_h_hrates_taus: list of
GateHHRatesTau(s) (optional) = None, gate_hh_tau_infs: list of
GateHHTauInf(s) (optional) = None, gate_h_hrates_infs: list of
GateHHRatesInf(s) (optional) = None, gate_h_hrates_tau_infs: list of
GateHHRatesTauInf(s) (optional) = None, gate_hh_instantaneouses:
list of GateHHInstantaneous(s) (optional) = None, gate_fractionals:
list of GateFractional(s) (optional) = None, gds_collector_=None,
**kwargs_)

Bases: IonChannel

IonChannelHH – Note ionChannel and ionChannelHH are currently functionally identical. This is needed
since many existing examples use ionChannel, some use ionChannelHH. NeuroML v2beta4 should remove one
of these, probably ionChannelHH.

Parameters
conductance (conductance) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

1.3. API documentation 363

libNeuroML Documentation

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

364 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

1.3. API documentation 365

libNeuroML Documentation

Returns
None

Return type
None

Raises
ValueError – if component is invalid

IonChannelKS

class neuroml.nml.nml.IonChannelKS(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
species: a NmlId (optional) = None, conductance: a
Nml2Quantity_conductance (optional) = None, neuro_lex_id: a
NeuroLexId (optional) = None, gate_kses: list of GateKS(s) (optional)
= None, gds_collector_=None, **kwargs_)

Bases: Standalone

A kinetic scheme based ion channel with multiple gateKS s, each of which consists of multiple KSState s and
KSTransition s giving the rates of transition between them IonChannelKS – A kinetic scheme based ion channel
with multiple gateKS s, each of which consists of multiple KSState s and KSTransition s giving the rates of
transition between them

Parameters
conductance (conductance) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

366 Chapter 1. User guide

libNeuroML Documentation

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

1.3. API documentation 367

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

368 Chapter 1. User guide

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

IonChannelScalable

class neuroml.nml.nml.IonChannelScalable(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, neuro_lex_id: a NeuroLexId (optional) =
None, q10_conductance_scalings: list of
Q10ConductanceScaling(s) (optional) = None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: Standalone

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

1.3. API documentation 369

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

370 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 371

libNeuroML Documentation

IonChannelVShift

class neuroml.nml.nml.IonChannelVShift(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, neuro_lex_id: a NeuroLexId (optional) =
None, q10_conductance_scalings: list of
Q10ConductanceScaling(s) (optional) = None, species: a NmlId
(optional) = None, type: a channelTypes (optional) = None,
conductance: a Nml2Quantity_conductance (optional) = None,
gates: list of GateHHUndetermined(s) (optional) = None,
gate_hh_rates: list of GateHHRates(s) (optional) = None,
gate_h_hrates_taus: list of GateHHRatesTau(s) (optional) =
None, gate_hh_tau_infs: list of GateHHTauInf(s) (optional) =
None, gate_h_hrates_infs: list of GateHHRatesInf(s) (optional) =
None, gate_h_hrates_tau_infs: list of GateHHRatesTauInf(s)
(optional) = None, gate_hh_instantaneouses: list of
GateHHInstantaneous(s) (optional) = None, gate_fractionals: list
of GateFractional(s) (optional) = None, v_shift: a
Nml2Quantity_voltage (required) = None, gds_collector_=None,
**kwargs_)

Bases: IonChannel

IonChannelVShift – Same as ionChannel , but with a vShift parameter to change voltage activation of gates.
The exact usage of vShift in expressions for rates is determined by the individual gates.

Parameters

• vShift (voltage) –

• conductance (conductance) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

372 Chapter 1. User guide

libNeuroML Documentation

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

1.3. API documentation 373

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

374 Chapter 1. User guide

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

Izhikevich2007Cell

class neuroml.nml.nml.Izhikevich2007Cell(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, neuro_lex_id: a NeuroLexId (optional) =
None, C: a Nml2Quantity_capacitance (required) = None, v0:
a Nml2Quantity_voltage (required) = None, k: a
Nml2Quantity_conductancePerVoltage (required) = None, vr:
a Nml2Quantity_voltage (required) = None, vt: a
Nml2Quantity_voltage (required) = None, vpeak: a
Nml2Quantity_voltage (required) = None, a: a
Nml2Quantity_pertime (required) = None, b: a
Nml2Quantity_conductance (required) = None, c: a
Nml2Quantity_voltage (required) = None, d: a
Nml2Quantity_current (required) = None,
gds_collector_=None, **kwargs_)

Bases: BaseCellMembPotCap

Izhikevich2007Cell – Cell based on the modified Izhikevich model in Izhikevich 2007, Dynamical systems in
neuroscience, MIT Press

Parameters

• v0 (voltage) –

• k (conductance_per_voltage) –

• vr (voltage) –

• vt (voltage) –

• vpeak (voltage) –

• a (per_time) –

• b (conductance) –

• c (voltage) –

• d (current) –

• C (capacitance) – Total capacitance of the cell membrane

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

1.3. API documentation 375

libNeuroML Documentation

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child

376 Chapter 1. User guide

libNeuroML Documentation

elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

1.3. API documentation 377

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

IzhikevichCell

class neuroml.nml.nml.IzhikevichCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, v0: a
Nml2Quantity_voltage (required) = None, thresh: a
Nml2Quantity_voltage (required) = None, a: a Nml2Quantity_none
(required) = None, b: a Nml2Quantity_none (required) = None, c: a
Nml2Quantity_none (required) = None, d: a Nml2Quantity_none
(required) = None, gds_collector_=None, **kwargs_)

Bases: BaseCell

IzhikevichCell – Cell based on the 2003 model of Izhikevich, see http://izhikevich.org/publications/spikes.htm

Parameters

• v0 (voltage) – Initial membrane potential

• a (none) – Time scale of the recovery variable U

• b (none) – Sensitivity of U to the subthreshold fluctuations of the membrane potential V

• c (none) – After-spike reset value of V

• d (none) – After-spike increase to U

• thresh (voltage) – Spike threshold

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

378 Chapter 1. User guide

http://izhikevich.org/publications/spikes.htm

libNeuroML Documentation

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child

1.3. API documentation 379

libNeuroML Documentation

elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

380 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

LEMS_Property

class neuroml.nml.nml.LEMS_Property(name: a string (required) = None, dimension: a string (required) =
None, description: a string (optional) = None, default_value: a
double (optional) = None, gds_collector_=None, **kwargs_)

Bases: NamedDimensionalType

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

1.3. API documentation 381

libNeuroML Documentation

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

382 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 383

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

Layout

class neuroml.nml.nml.Layout(spaces: a NmlId (optional) = None, random: a RandomLayout (required) =
None, grid: a GridLayout (required) = None, unstructured: a
UnstructuredLayout (required) = None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

384 Chapter 1. User guide

libNeuroML Documentation

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

1.3. API documentation 385

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

LinearGradedSynapse

class neuroml.nml.nml.LinearGradedSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, neuro_lex_id: a NeuroLexId (optional) =
None, conductance: a Nml2Quantity_conductance (required)
= None, gds_collector_=None, **kwargs_)

Bases: BaseSynapse

386 Chapter 1. User guide

libNeuroML Documentation

LinearGradedSynapse – Behaves just like a one way gap junction.

Parameters
conductance (conductance) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

1.3. API documentation 387

libNeuroML Documentation

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

388 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Location

class neuroml.nml.nml.Location(x: a float (required) = None, y: a float (required) = None, z: a float
(required) = None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

Location – Specifies the (x, y, z) location of a single instance of a component in a population

Parameters

• x (none) –

• y (none) –

• z (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

1.3. API documentation 389

libNeuroML Documentation

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

390 Chapter 1. User guide

libNeuroML Documentation

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

1.3. API documentation 391

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Member

class neuroml.nml.nml.Member(segments: a NonNegativeInteger (required) = None, gds_collector_=None,
**kwargs_)

Bases: BaseWithoutId

Member – A single identified segment which is part of the segmentGroup

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

392 Chapter 1. User guide

libNeuroML Documentation

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

1.3. API documentation 393

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

394 Chapter 1. User guide

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

MembraneProperties

class neuroml.nml.nml.MembraneProperties(channel_populations: list of ChannelPopulation(s) (optional) =
None, channel_densities: list of ChannelDensity(s) (optional)
= None, channel_density_v_shifts: list of
ChannelDensityVShift(s) (optional) = None,
channel_density_nernsts: list of ChannelDensityNernst(s)
(optional) = None, channel_density_ghks: list of
ChannelDensityGHK(s) (optional) = None,
channel_density_ghk2s: list of ChannelDensityGHK2(s)
(optional) = None, channel_density_non_uniforms: list of
ChannelDensityNonUniform(s) (optional) = None,
channel_density_non_uniform_nernsts: list of
ChannelDensityNonUniformNernst(s) (optional) = None,
channel_density_non_uniform_ghks: list of
ChannelDensityNonUniformGHK(s) (optional) = None,
spike_threshes: list of SpikeThresh(s) (optional) = None,
specific_capacitances: list of SpecificCapacitance(s) (optional)
= None, init_memb_potentials: list of InitMembPotential(s)
(optional) = None, extensiontype_=None,
gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

MembraneProperties – Properties specific to the membrane, such as the populations of channels, channelDen-
sities, specificCapacitance, etc.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

1.3. API documentation 395

libNeuroML Documentation

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

396 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 397

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

MembraneProperties2CaPools

class neuroml.nml.nml.MembraneProperties2CaPools(channel_populations: list of ChannelPopulation(s)
(optional) = None, channel_densities: list of
ChannelDensity(s) (optional) = None,
channel_density_v_shifts: list of
ChannelDensityVShift(s) (optional) = None,
channel_density_nernsts: list of
ChannelDensityNernst(s) (optional) = None,
channel_density_ghks: list of
ChannelDensityGHK(s) (optional) = None,
channel_density_ghk2s: list of
ChannelDensityGHK2(s) (optional) = None,
channel_density_non_uniforms: list of
ChannelDensityNonUniform(s) (optional) = None,
channel_density_non_uniform_nernsts: list of
ChannelDensityNonUniformNernst(s) (optional) =
None, channel_density_non_uniform_ghks: list of
ChannelDensityNonUniformGHK(s) (optional) =
None, spike_threshes: list of SpikeThresh(s)
(optional) = None, specific_capacitances: list of
SpecificCapacitance(s) (optional) = None,
init_memb_potentials: list of InitMembPotential(s)
(optional) = None, channel_density_nernst_ca2s:
list of ChannelDensityNernstCa2(s) (optional) =
None, gds_collector_=None, **kwargs_)

Bases: MembraneProperties

MembraneProperties2CaPools – Variant of membraneProperties with 2 independent Ca pools

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

398 Chapter 1. User guide

libNeuroML Documentation

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

1.3. API documentation 399

libNeuroML Documentation

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

400 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Morphology

class neuroml.nml.nml.Morphology(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
segments: list of Segment(s) (required) = None, segment_groups: list of
SegmentGroup(s) (optional) = None, gds_collector_=None, **kwargs_)

Bases: Standalone

Morphology – The collection of segment s which specify the 3D structure of the cell, along with a number of
segmentGroup s

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

1.3. API documentation 401

libNeuroML Documentation

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

402 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

property num_segments

Get the number of segments included in this cell morphology.

Returns
number of segments

Return type
int

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 403

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

NamedDimensionalType

class neuroml.nml.nml.NamedDimensionalType(name: a string (required) = None, dimension: a string
(required) = None, description: a string (optional) = None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

404 Chapter 1. User guide

libNeuroML Documentation

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

1.3. API documentation 405

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

NamedDimensionalVariable

class neuroml.nml.nml.NamedDimensionalVariable(name: a string (required) = None, dimension: a string
(required) = None, description: a string (optional) =
None, exposure: a string (optional) = None,
extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: BaseWithoutId

406 Chapter 1. User guide

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

1.3. API documentation 407

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

408 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Network

class neuroml.nml.nml.Network(id: a NmlId (required) = None, metaid: a MetaId (optional) = None, notes: a
string (optional) = None, properties: list of Property(s) (optional) = None,
annotation: a Annotation (optional) = None, type: a networkTypes (optional)
= None, temperature: a Nml2Quantity_temperature (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, spaces: list of Space(s)
(optional) = None, regions: list of Region(s) (optional) = None,
extracellular_properties: list of ExtracellularPropertiesLocal(s) (optional) =
None, populations: list of Population(s) (required) = None, cell_sets: list of
CellSet(s) (optional) = None, synaptic_connections: list of
SynapticConnection(s) (optional) = None, projections: list of Projection(s)
(optional) = None, electrical_projections: list of ElectricalProjection(s)
(optional) = None, continuous_projections: list of ContinuousProjection(s)
(optional) = None, explicit_inputs: list of ExplicitInput(s) (optional) = None,
input_lists: list of InputList(s) (optional) = None, gds_collector_=None,
**kwargs_)

Bases: Standalone

Network – Network containing: population s (potentially of type populationList , and so specifying a list of
cell location s); projection s (with lists of connection s) and/or explicitConnection s; and inputList s (with
lists of input s) and/or explicitInput s. Note: often in NeuroML this will be of type networkWithTemperature
if there are temperature dependent elements (e. g. ion channels).

1.3. API documentation 409

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

410 Chapter 1. User guide

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

exportHdf5(h5file, h5Group)
Export to HDF5 file.

get_by_id(id)
Get a component by its ID

Parameters
id (str) – ID of component to find

Returns
component with specified ID or None if no component with specified ID found

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

1.3. API documentation 411

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

NeuroMLDocument

412 Chapter 1. User guide

libNeuroML Documentation

class neuroml.nml.nml.NeuroMLDocument(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation (optional)
= None, includes: list of IncludeType(s) (optional) = None,
extracellular_properties: list of ExtracellularProperties(s)
(optional) = None, intracellular_properties: list of
IntracellularProperties(s) (optional) = None, morphology: list of
Morphology(s) (optional) = None, ion_channel: list of
IonChannel(s) (optional) = None, ion_channel_hhs: list of
IonChannelHH(s) (optional) = None, ion_channel_v_shifts: list of
IonChannelVShift(s) (optional) = None, ion_channel_kses: list of
IonChannelKS(s) (optional) = None,
decaying_pool_concentration_models: list of
DecayingPoolConcentrationModel(s) (optional) = None,
fixed_factor_concentration_models: list of
FixedFactorConcentrationModel(s) (optional) = None,
alpha_current_synapses: list of AlphaCurrentSynapse(s) (optional)
= None, alpha_synapses: list of AlphaSynapse(s) (optional) =
None, exp_one_synapses: list of ExpOneSynapse(s) (optional) =
None, exp_two_synapses: list of ExpTwoSynapse(s) (optional) =
None, exp_three_synapses: list of ExpThreeSynapse(s) (optional) =
None, blocking_plastic_synapses: list of BlockingPlasticSynapse(s)
(optional) = None, double_synapses: list of DoubleSynapse(s)
(optional) = None, gap_junctions: list of GapJunction(s) (optional)
= None, silent_synapses: list of SilentSynapse(s) (optional) =
None, linear_graded_synapses: list of LinearGradedSynapse(s)
(optional) = None, graded_synapses: list of GradedSynapse(s)
(optional) = None, biophysical_properties: list of
BiophysicalProperties(s) (optional) = None, cells: list of Cell(s)
(optional) = None, cell2_ca_poolses: list of Cell2CaPools(s)
(optional) = None, base_cells: list of BaseCell(s) (optional) =
None, iaf_tau_cells: list of IafTauCell(s) (optional) = None,
iaf_tau_ref_cells: list of IafTauRefCell(s) (optional) = None,
iaf_cells: list of IafCell(s) (optional) = None, iaf_ref_cells: list of
IafRefCell(s) (optional) = None, izhikevich_cells: list of
IzhikevichCell(s) (optional) = None, izhikevich2007_cells: list of
Izhikevich2007Cell(s) (optional) = None, ad_ex_ia_f_cells: list of
AdExIaFCell(s) (optional) = None, fitz_hugh_nagumo_cells: list of
FitzHughNagumoCell(s) (optional) = None,
fitz_hugh_nagumo1969_cells: list of FitzHughNagumo1969Cell(s)
(optional) = None, pinsky_rinzel_ca3_cells: list of
PinskyRinzelCA3Cell(s) (optional) = None, pulse_generators: list
of PulseGenerator(s) (optional) = None, pulse_generator_dls: list
of PulseGeneratorDL(s) (optional) = None, sine_generators: list of
SineGenerator(s) (optional) = None, sine_generator_dls: list of
SineGeneratorDL(s) (optional) = None, ramp_generators: list of
RampGenerator(s) (optional) = None, ramp_generator_dls: list of
RampGeneratorDL(s) (optional) = None, compound_inputs: list of
CompoundInput(s) (optional) = None, compound_input_dls: list of
CompoundInputDL(s) (optional) = None, voltage_clamps: list of
VoltageClamp(s) (optional) = None, voltage_clamp_triples: list of
VoltageClampTriple(s) (optional) = None, spike_arrays: list of
SpikeArray(s) (optional) = None, timed_synaptic_inputs: list of
TimedSynapticInput(s) (optional) = None, spike_generators: list of
SpikeGenerator(s) (optional) = None, spike_generator_randoms:
list of SpikeGeneratorRandom(s) (optional) = None,
spike_generator_poissons: list of SpikeGeneratorPoisson(s)
(optional) = None, spike_generator_ref_poissons: list of
SpikeGeneratorRefPoisson(s) (optional) = None,
poisson_firing_synapses: list of PoissonFiringSynapse(s)
(optional) = None, transient_poisson_firing_synapses: list of
TransientPoissonFiringSynapse(s) (optional) = None,
IF_curr_alpha: list of IF_curr_alpha(s) (optional) = None,
IF_curr_exp: list of IF_curr_exp(s) (optional) = None,
IF_cond_alpha: list of IF_cond_alpha(s) (optional) = None,
IF_cond_exp: list of IF_cond_exp(s) (optional) = None,
EIF_cond_exp_isfa_ista: list of EIF_cond_exp_isfa_ista(s)
(optional) = None, EIF_cond_alpha_isfa_ista: list of
EIF_cond_alpha_isfa_ista(s) (optional) = None, HH_cond_exp:
list of HH_cond_exp(s) (optional) = None, exp_cond_synapses: list
of ExpCondSynapse(s) (optional) = None, alpha_cond_synapses:
list of AlphaCondSynapse(s) (optional) = None,
exp_curr_synapses: list of ExpCurrSynapse(s) (optional) = None,
alpha_curr_synapses: list of AlphaCurrSynapse(s) (optional) =
None, SpikeSourcePoisson: list of SpikeSourcePoisson(s) (optional)
= None, networks: list of Network(s) (optional) = None,
ComponentType: list of ComponentType(s) (optional) = None,
gds_collector_=None, **kwargs_)

1.3. API documentation 413

libNeuroML Documentation

Bases: Standalone

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

append(element)
Append an element

Parameters
element (Object) – element to append

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need

414 Chapter 1. User guide

libNeuroML Documentation

to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

get_by_id(id)
Get a component by specifying its ID.

Parameters
id (str) – id of Component to get

Returns
Component with given ID or None if no Component with provided ID was found

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

1.3. API documentation 415

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

summary(show_includes=True, show_non_network=True)
Get a pretty-printed summary of the complete NeuroMLDocument.

This includes information on the various Components included in the NeuroMLDocument: networks, cells,
projections, synapses, and so on.

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

416 Chapter 1. User guide

libNeuroML Documentation

OpenState

class neuroml.nml.nml.OpenState(id: a NmlId (required) = None, gds_collector_=None, **kwargs_)
Bases: Base

OpenState – A KSState with relativeConductance of 1

Parameters
relativeConductance (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need

1.3. API documentation 417

libNeuroML Documentation

to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

418 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Parameter

class neuroml.nml.nml.Parameter(name: a string (required) = None, dimension: a string (required) = None,
description: a string (optional) = None, gds_collector_=None, **kwargs_)

Bases: NamedDimensionalType

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

1.3. API documentation 419

libNeuroML Documentation

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

420 Chapter 1. User guide

libNeuroML Documentation

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

1.3. API documentation 421

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Path

class neuroml.nml.nml.Path(from_: a SegmentEndPoint (optional) = None, to: a SegmentEndPoint (optional)
= None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

Path – Include all the segment s between those specified by from and to , inclusive

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

422 Chapter 1. User guide

libNeuroML Documentation

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

1.3. API documentation 423

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

424 Chapter 1. User guide

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

PinskyRinzelCA3Cell

class neuroml.nml.nml.PinskyRinzelCA3Cell(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, neuro_lex_id: a NeuroLexId (optional) =
None, i_soma: a Nml2Quantity_currentDensity (required) =
None, i_dend: a Nml2Quantity_currentDensity (required) =
None, gc: a Nml2Quantity_conductanceDensity (required) =
None, g_ls: a Nml2Quantity_conductanceDensity (required)
= None, g_ld: a Nml2Quantity_conductanceDensity
(required) = None, g_na: a
Nml2Quantity_conductanceDensity (required) = None, g_kdr:
a Nml2Quantity_conductanceDensity (required) = None,
g_ca: a Nml2Quantity_conductanceDensity (required) =
None, g_kahp: a Nml2Quantity_conductanceDensity
(required) = None, g_kc: a
Nml2Quantity_conductanceDensity (required) = None,
g_nmda: a Nml2Quantity_conductanceDensity (required) =
None, g_ampa: a Nml2Quantity_conductanceDensity
(required) = None, e_na: a Nml2Quantity_voltage (required)
= None, e_ca: a Nml2Quantity_voltage (required) = None,
e_k: a Nml2Quantity_voltage (required) = None, e_l: a
Nml2Quantity_voltage (required) = None, qd0: a
Nml2Quantity_none (required) = None, pp: a
Nml2Quantity_none (required) = None, alphac: a
Nml2Quantity_none (required) = None, betac: a
Nml2Quantity_none (required) = None, cm: a
Nml2Quantity_specificCapacitance (required) = None,
gds_collector_=None, **kwargs_)

Bases: BaseCell

PinskyRinzelCA3Cell – Reduced CA3 cell model from Pinsky and Rinzel 1994. See https://github.com/
OpenSourceBrain/PinskyRinzelModel

Parameters

• iSoma (currentDensity) –

• iDend (currentDensity) –

• gLs (conductanceDensity) –

• gLd (conductanceDensity) –

• gNa (conductanceDensity) –

• gKdr (conductanceDensity) –

• gCa (conductanceDensity) –

• gKahp (conductanceDensity) –

1.3. API documentation 425

https://github.com/OpenSourceBrain/PinskyRinzelModel
https://github.com/OpenSourceBrain/PinskyRinzelModel

libNeuroML Documentation

• gKC (conductanceDensity) –

• gc (conductanceDensity) –

• eNa (voltage) –

• eCa (voltage) –

• eK (voltage) –

• eL (voltage) –

• pp (none) –

• cm (specificCapacitance) –

• alphac (none) –

• betac (none) –

• gNmda (conductanceDensity) –

• gAmpa (conductanceDensity) –

• qd0 (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

426 Chapter 1. User guide

libNeuroML Documentation

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

1.3. API documentation 427

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

428 Chapter 1. User guide

libNeuroML Documentation

PlasticityMechanism

class neuroml.nml.nml.PlasticityMechanism(type: a PlasticityTypes (required) = None, init_release_prob:
a ZeroToOne (required) = None, tau_rec: a
Nml2Quantity_time (required) = None, tau_fac: a
Nml2Quantity_time (optional) = None, gds_collector_=None,
**kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need

1.3. API documentation 429

libNeuroML Documentation

to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

430 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Point3DWithDiam

class neuroml.nml.nml.Point3DWithDiam(x: a double (required) = None, y: a double (required) = None, z: a
double (required) = None, diameter: a DoubleGreaterThanZero
(required) = None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

Point3DWithDiam – Base type for ComponentTypes which specify an (x, y, z) coordinate along with a diameter.
Note: no dimension used in the attributes for these coordinates! These are assumed to have dimension micrometer
(10^-6 m). This is due to micrometers being the default option for the majority of neuronal morphology formats,
and dimensions are omitted here to facilitate reading and writing of morphologies in NeuroML.

Parameters

• x (none) – x coordinate of the point. Note: no dimension used, see description of
point3DWithDiam for details.

1.3. API documentation 431

libNeuroML Documentation

• y (none) – y coordinate of the ppoint. Note: no dimension used, see description of
point3DWithDiam for details.

• z (none) – z coordinate of the ppoint. Note: no dimension used, see description of
point3DWithDiam for details.

• diameter (none) – Diameter of the ppoint. Note: no dimension used, see description of
point3DWithDiam for details.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

432 Chapter 1. User guide

libNeuroML Documentation

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

distance_to(other_3d_point)
Find the distance between this point and another.

Parameters
other_3d_point (Point3DWithDiam) – other 3D point to calculate distance to

Returns
distance between the two points

Return type
float

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

1.3. API documentation 433

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

434 Chapter 1. User guide

libNeuroML Documentation

PoissonFiringSynapse

class neuroml.nml.nml.PoissonFiringSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional)
= None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, average_rate: a Nml2Quantity_pertime
(required) = None, synapse: a string (required) = None,
spike_target: a string (required) = None,
gds_collector_=None, **kwargs_)

Bases: Standalone

PoissonFiringSynapse – Poisson spike generator firing at averageRate, which is connected to single synapse that
is triggered every time a spike is generated, producing an input current. See also transientPoissonFiringSynapse
.

Parameters
averageRate (per_time) – The average rate at which spikes are emitted

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

1.3. API documentation 435

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

436 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 437

libNeuroML Documentation

Population

class neuroml.nml.nml.Population(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s) (optional)
= None, annotation: a Annotation (optional) = None, component: a
NmlId (required) = None, size: a NonNegativeInteger (optional) = None,
type: a populationTypes (optional) = None, extracellular_properties: a
NmlId (optional) = None, neuro_lex_id: a NeuroLexId (optional) = None,
layout: a Layout (optional) = None, instances: list of Instance(s)
(required) = None, gds_collector_=None, **kwargs_)

Bases: Standalone

Population – A population of components, with just one parameter for the size, i. e. number of components
to create. Note: quite often this is used with type= populationList which means the size is determined by the
number of instance s (with location s) in the list. The size attribute is still set, and there will be a validation
error if this does not match the number in the list.

Parameters
size (none) – Number of instances of this Component to create when the population is instan-
tiated

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

438 Chapter 1. User guide

libNeuroML Documentation

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

exportHdf5(h5file, h5Group)
Export to HDF5 file.

get_size()

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be

1.3. API documentation 439

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

440 Chapter 1. User guide

libNeuroML Documentation

Projection

class neuroml.nml.nml.Projection(id: a NmlId (required) = None, presynaptic_population: a NmlId
(required) = None, postsynaptic_population: a NmlId (required) = None,
synapse: a NmlId (required) = None, connections: list of Connection(s)
(optional) = None, connection_wds: list of ConnectionWD(s) (optional) =
None, gds_collector_=None, **kwargs_)

Bases: BaseProjection

Projection – Projection from one population, presynapticPopulation to another, postsynapticPopulation,
through synapse. Contains lists of connection or connectionWD elements.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

1.3. API documentation 441

libNeuroML Documentation

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

exportHdf5(h5file, h5Group)
Export to HDF5 file.

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

442 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 443

libNeuroML Documentation

Property

class neuroml.nml.nml.Property(tag: a string (required) = None, value: a string (required) = None,
gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

Property – A property (a tag and value pair), which can be on any baseStandalone either as a direct child, or
within an Annotation . Generally something which helps the visual display or facilitates simulation of a Compo-
nent, but is not a core physiological property. Common examples include: numberInternalDivisions, equivalent
of nseg in NEURON; radius, for a radius to use in graphical displays for abstract cells (i. e. without defined
morphologies); color, the color to use for a Population or populationList of cells; recommended_dt_ms,
the recommended timestep to use for simulating a Network , recommended_duration_ms the recommended
duration to use when running a Network

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

444 Chapter 1. User guide

libNeuroML Documentation

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

1.3. API documentation 445

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

ProximalDetails

class neuroml.nml.nml.ProximalDetails(translation_start: a double (required) = None,
gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

446 Chapter 1. User guide

libNeuroML Documentation

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

1.3. API documentation 447

libNeuroML Documentation

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an

448 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

PulseGenerator

class neuroml.nml.nml.PulseGenerator(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
delay: a Nml2Quantity_time (required) = None, duration: a
Nml2Quantity_time (required) = None, amplitude: a
Nml2Quantity_current (required) = None, gds_collector_=None,
**kwargs_)

Bases: Standalone

PulseGenerator – Generates a constant current pulse of a certain amplitude for a specified duration after a
delay. Scaled by weight, if set

Parameters

• delay (time) – Delay before change in current. Current is zero prior to this.

• duration (time) – Duration for holding current at amplitude. Current is zero after delay +
duration.

• amplitude (current) – Amplitude of current pulse

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

1.3. API documentation 449

libNeuroML Documentation

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

450 Chapter 1. User guide

libNeuroML Documentation

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

1.3. API documentation 451

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

PulseGeneratorDL

class neuroml.nml.nml.PulseGeneratorDL(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, delay: a Nml2Quantity_time (required) =
None, duration: a Nml2Quantity_time (required) = None,
amplitude: a Nml2Quantity_current (required) = None,
gds_collector_=None, **kwargs_)

Bases: Standalone

PulseGeneratorDL – Dimensionless equivalent of pulseGenerator . Generates a constant current pulse of a
certain amplitude for a specified duration after a delay. Scaled by weight, if set

Parameters

• delay (time) – Delay before change in current. Current is zero prior to this.

• duration (time) – Duration for holding current at amplitude. Current is zero after delay +
duration.

• amplitude (none) – Amplitude of current pulse

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

452 Chapter 1. User guide

libNeuroML Documentation

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

1.3. API documentation 453

libNeuroML Documentation

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

454 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Q10ConductanceScaling

class neuroml.nml.nml.Q10ConductanceScaling(q10_factor: a Nml2Quantity_none (required) = None,
experimental_temp: a Nml2Quantity_temperature
(required) = None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

Q10ConductanceScaling – A value for the conductance scaling which varies as a standard function of the differ-
ence between the current temperature, temperature, and the temperature at which the conductance was originally
determined, experimentalTemp

Parameters

• q10Factor (none) –

• experimentalTemp (temperature) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

1.3. API documentation 455

libNeuroML Documentation

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

456 Chapter 1. User guide

libNeuroML Documentation

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

1.3. API documentation 457

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Q10Settings

class neuroml.nml.nml.Q10Settings(type: a NmlId (required) = None, fixed_q10: a Nml2Quantity_none
(optional) = None, q10_factor: a Nml2Quantity_none (optional) =
None, experimental_temp: a Nml2Quantity_temperature (optional) =
None, gds_collector_=None, **kwargs_)

Bases: GeneratedsSuper

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

458 Chapter 1. User guide

libNeuroML Documentation

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

1.3. API documentation 459

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

460 Chapter 1. User guide

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

RampGenerator

class neuroml.nml.nml.RampGenerator(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
delay: a Nml2Quantity_time (required) = None, duration: a
Nml2Quantity_time (required) = None, start_amplitude: a
Nml2Quantity_current (required) = None, finish_amplitude: a
Nml2Quantity_current (required) = None, baseline_amplitude: a
Nml2Quantity_current (required) = None, gds_collector_=None,
**kwargs_)

Bases: Standalone

RampGenerator – Generates a ramping current after a time delay, for a fixed duration. During this time the
current steadily changes from startAmplitude to finishAmplitude. Scaled by weight, if set

Parameters

• delay (time) – Delay before change in current. Current is baselineAmplitude prior to this.

• duration (time) – Duration for holding current at amplitude. Current is baselineAmplitude
after delay + duration.

• startAmplitude (current) – Amplitude of linearly varying current at time delay

• finishAmplitude (current) – Amplitude of linearly varying current at time delay + du-
ration

• baselineAmplitude (current) – Amplitude of current before time delay, and after time
delay + duration

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

1.3. API documentation 461

libNeuroML Documentation

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

462 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

1.3. API documentation 463

libNeuroML Documentation

Returns
None

Return type
None

Raises
ValueError – if component is invalid

RampGeneratorDL

class neuroml.nml.nml.RampGeneratorDL(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation (optional)
= None, delay: a Nml2Quantity_time (required) = None, duration:
a Nml2Quantity_time (required) = None, start_amplitude: a
Nml2Quantity_current (required) = None, finish_amplitude: a
Nml2Quantity_current (required) = None, baseline_amplitude: a
Nml2Quantity_current (required) = None, gds_collector_=None,
**kwargs_)

Bases: Standalone

RampGeneratorDL – Dimensionless equivalent of rampGenerator . Generates a ramping current after a time
delay, for a fixed duration. During this time the dimensionless current steadily changes from startAmplitude
to finishAmplitude. Scaled by weight, if set

Parameters

• delay (time) – Delay before change in current. Current is baselineAmplitude prior to this.

• duration (time) – Duration for holding current at amplitude. Current is baselineAmplitude
after delay + duration.

• startAmplitude (none) – Amplitude of linearly varying current at time delay

• finishAmplitude (none) – Amplitude of linearly varying current at time delay + duration

• baselineAmplitude (none) – Amplitude of current before time delay, and after time delay
+ duration

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

464 Chapter 1. User guide

libNeuroML Documentation

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

1.3. API documentation 465

libNeuroML Documentation

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

466 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

RandomLayout

class neuroml.nml.nml.RandomLayout(number: a nonNegativeInteger (optional) = None, regions: a NmlId
(optional) = None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

1.3. API documentation 467

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

468 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 469

libNeuroML Documentation

ReactionScheme

class neuroml.nml.nml.ReactionScheme(id: a NmlId (required) = None, source: a string (required) = None,
type: a string (required) = None, anytypeobjs_=None,
gds_collector_=None, **kwargs_)

Bases: Base

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

470 Chapter 1. User guide

libNeuroML Documentation

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

1.3. API documentation 471

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Region

class neuroml.nml.nml.Region(id: a NmlId (required) = None, spaces: a NmlId (optional) = None,
anytypeobjs_=None, gds_collector_=None, **kwargs_)

Bases: Base

Region – Initial attempt to specify 3D region for placing cells. Work in progress. . .

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

472 Chapter 1. User guide

libNeuroML Documentation

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child

1.3. API documentation 473

libNeuroML Documentation

elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

474 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Requirement

class neuroml.nml.nml.Requirement(name: a string (required) = None, dimension: a string (required) =
None, description: a string (optional) = None, gds_collector_=None,
**kwargs_)

Bases: NamedDimensionalType

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

1.3. API documentation 475

libNeuroML Documentation

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

476 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 477

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

Resistivity

class neuroml.nml.nml.Resistivity(value: a Nml2Quantity_resistivity (required) = None, segment_groups:
a NmlId (optional) = 'all', gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

Resistivity – The resistivity, or specific axial resistance, of the cytoplasm

Parameters
value (resistivity) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

478 Chapter 1. User guide

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

1.3. API documentation 479

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

validate_Nml2Quantity_resistivity(value)

validate_Nml2Quantity_resistivity_patterns_ =
[['^(-?([0-9]*(\\.[0-9]+)?)([eE]-?[0-9]+)?[\\s]*(ohm_cm|kohm_cm|ohm_m))$']]

480 Chapter 1. User guide

libNeuroML Documentation

ReverseTransition

class neuroml.nml.nml.ReverseTransition(id: a NmlId (required) = None, from_: a NmlId (required) =
None, to: a NmlId (required) = None, anytypeobjs_=None,
gds_collector_=None, **kwargs_)

Bases: Base

ReverseTransition – A reverse only KSTransition for a gateKS which specifies a rate (type baseHHRate)
which follows one of the standard Hodgkin Huxley forms (e. g. HHExpRate , HHSigmoidRate , HHExpLin-
earRate

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

1.3. API documentation 481

libNeuroML Documentation

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

482 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Segment

class neuroml.nml.nml.Segment(id: a NonNegativeInteger (required) = None, name: a string (optional) =
None, neuro_lex_id: a NeuroLexId (optional) = None, parent: a
SegmentParent (optional) = None, proximal: a Point3DWithDiam (optional)
= None, distal: a Point3DWithDiam (required) = None,
gds_collector_=None, **kwargs_)

Bases: BaseNonNegativeIntegerId

Segment – A segment defines the smallest unit within a possibly branching structure (morphology), such as
a dendrite or axon. Its id should be a nonnegative integer (usually soma/root = 0). Its end points are given by

1.3. API documentation 483

libNeuroML Documentation

the proximal and distal points. The proximal point can be omitted, usually because it is the same as a point on
the parent segment, see proximal for details. parent specifies the parent segment. The first segment of a cell (
with no parent) usually represents the soma. The shape is normally a cylinder (radii of the proximal and distal
equal, but positions different) or a conical frustum (radii and positions different). If the x, y, x positions of
the proximal and distal are equal, the segment can be interpreted as a sphere, and in this case the radii of these
points must be equal. NOTE: LEMS does not yet support multicompartmental modelling, so the Dynamics here
is only appropriate for single compartment modelling.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

484 Chapter 1. User guide

libNeuroML Documentation

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

property length

Get the length of the segment.

Returns
length of the segment

Return type
float

1.3. API documentation 485

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

property surface_area

Get the surface area of the segment.

Returns
surface area of segment

Return type
float

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

486 Chapter 1. User guide

libNeuroML Documentation

property volume

Get the volume of the segment.

Returns
volume of segment

Return type
float

SegmentEndPoint

class neuroml.nml.nml.SegmentEndPoint(segments: a NonNegativeInteger (required) = None,
gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

1.3. API documentation 487

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

488 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 489

libNeuroML Documentation

SegmentGroup

class neuroml.nml.nml.SegmentGroup(id: a NonNegativeInteger (required) = None, neuro_lex_id: a
NeuroLexId (optional) = None, notes: a string (optional) = None,
properties: list of Property(s) (optional) = None, annotation: a
Annotation (optional) = None, members: list of Member(s) (optional)
= None, includes: list of Include(s) (optional) = None, paths: list of
Path(s) (optional) = None, sub_trees: list of SubTree(s) (optional) =
None, inhomogeneous_parameters: list of InhomogeneousParameter(s)
(optional) = None, gds_collector_=None, **kwargs_)

Bases: Base

SegmentGroup – A method to describe a group of segment s in a morphology , e. g. soma_group, den-
drite_group, axon_group. While a name is useful to describe the group, the neuroLexId attribute can be used
to explicitly specify the meaning of the group, e. g. sao1044911821 for ‘Neuronal Cell Body’, sao1211023249
for ‘Dendrite’. The segment s in this group can be specified as: a list of individual member segments; a path
, all of the segments along which should be included; a subTree of the cell to include; other segmentGroups to
include (so all segments from those get included here). An inhomogeneousParameter can be defined on the
region of the cell specified by this group (see variableParameter for usage).

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

490 Chapter 1. User guide

libNeuroML Documentation

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

1.3. API documentation 491

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

492 Chapter 1. User guide

libNeuroML Documentation

SegmentParent

class neuroml.nml.nml.SegmentParent(segments: a NonNegativeInteger (required) = None, fraction_along: a
ZeroToOne (optional) = '1', gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

1.3. API documentation 493

libNeuroML Documentation

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

494 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

SilentSynapse

class neuroml.nml.nml.SilentSynapse(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None,
gds_collector_=None, **kwargs_)

Bases: BaseSynapse

SilentSynapse – Dummy synapse which emits no current. Used as presynaptic endpoint for analog synaptic
connection.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

1.3. API documentation 495

libNeuroML Documentation

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

496 Chapter 1. User guide

libNeuroML Documentation

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

1.3. API documentation 497

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

SineGenerator

class neuroml.nml.nml.SineGenerator(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
delay: a Nml2Quantity_time (required) = None, phase: a
Nml2Quantity_none (required) = None, duration: a
Nml2Quantity_time (required) = None, amplitude: a
Nml2Quantity_current (required) = None, period: a
Nml2Quantity_time (required) = None, gds_collector_=None,
**kwargs_)

Bases: Standalone

SineGenerator – Generates a sinusoidally varying current after a time delay, for a fixed duration. The period
and maximum amplitude of the current can be set as well as the phase at which to start. Scaled by weight, if
set

Parameters

• phase (none) – Phase (between 0 and 2*pi) at which to start the varying current (i. e. at
time given by delay)

• delay (time) – Delay before change in current. Current is zero prior to this.

• duration (time) – Duration for holding current at amplitude. Current is zero after delay +
duration.

• amplitude (current) – Maximum amplitude of current

• period (time) – Time period of oscillation

498 Chapter 1. User guide

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

1.3. API documentation 499

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

500 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

SineGeneratorDL

class neuroml.nml.nml.SineGeneratorDL(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation (optional)
= None, delay: a Nml2Quantity_time (required) = None, phase: a
Nml2Quantity_none (required) = None, duration: a
Nml2Quantity_time (required) = None, amplitude: a
Nml2Quantity_current (required) = None, period: a
Nml2Quantity_time (required) = None, gds_collector_=None,
**kwargs_)

Bases: Standalone

SineGeneratorDL – Dimensionless equivalent of sineGenerator . Generates a sinusoidally varying current after
a time delay, for a fixed duration. The period and maximum amplitude of the current can be set as well as the
phase at which to start. Scaled by weight, if set

Parameters

• phase (none) – Phase (between 0 and 2*pi) at which to start the varying current (i. e. at
time given by delay)

• delay (time) – Delay before change in current. Current is zero prior to this.

• duration (time) – Duration for holding current at amplitude. Current is zero after delay +
duration.

1.3. API documentation 501

libNeuroML Documentation

• amplitude (none) – Maximum amplitude of current

• period (time) – Time period of oscillation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

502 Chapter 1. User guide

libNeuroML Documentation

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids

1.3. API documentation 503

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Space

class neuroml.nml.nml.Space(id: a NmlId (required) = None, based_on: a allowedSpaces (optional) = None,
structure: a SpaceStructure (optional) = None, gds_collector_=None,
**kwargs_)

Bases: Base

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

504 Chapter 1. User guide

libNeuroML Documentation

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

1.3. API documentation 505

libNeuroML Documentation

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

506 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

SpaceStructure

class neuroml.nml.nml.SpaceStructure(x_spacing: a float (optional) = None, y_spacing: a float (optional) =
None, z_spacing: a float (optional) = None, x_start: a float
(optional) = 0, y_start: a float (optional) = 0, z_start: a float
(optional) = 0, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

1.3. API documentation 507

libNeuroML Documentation

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

508 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 509

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

Species

class neuroml.nml.nml.Species(id: a NmlId (required) = None, concentration_model: a NmlId (required) =
None, ion: a NmlId (optional) = None, initial_concentration: a
Nml2Quantity_concentration (required) = None, initial_ext_concentration: a
Nml2Quantity_concentration (required) = None, segment_groups: a NmlId
(optional) = 'all', gds_collector_=None, **kwargs_)

Bases: Base

Species – Description of a chemical species identified by ion, which has internal, concentration, and external,
extConcentration values for its concentration

Parameters

• initialConcentration (concentration) –

• initialExtConcentration (concentration) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

510 Chapter 1. User guide

libNeuroML Documentation

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

1.3. API documentation 511

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

512 Chapter 1. User guide

libNeuroML Documentation

SpecificCapacitance

class neuroml.nml.nml.SpecificCapacitance(value: a Nml2Quantity_specificCapacitance (required) =
None, segment_groups: a NmlId (optional) = 'all',
gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

SpecificCapacitance – Capacitance per unit area

Parameters
value (specificCapacitance) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

1.3. API documentation 513

libNeuroML Documentation

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

514 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Spike

class neuroml.nml.nml.Spike(id: a NonNegativeInteger (required) = None, time: a Nml2Quantity_time
(required) = None, gds_collector_=None, **kwargs_)

Bases: BaseNonNegativeIntegerId

Spike – Emits a single spike at the specified time

Parameters
time (time) – Time at which to emit one spike event

1.3. API documentation 515

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

516 Chapter 1. User guide

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

1.3. API documentation 517

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

SpikeArray

class neuroml.nml.nml.SpikeArray(id: a NonNegativeInteger (required) = None, metaid: a MetaId (optional)
= None, notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None, spikes:
list of Spike(s) (optional) = None, gds_collector_=None, **kwargs_)

Bases: Standalone

SpikeArray – Set of spike ComponentTypes, each emitting one spike at a certain time. Can be used to feed a
predetermined spike train into a cell

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

518 Chapter 1. User guide

libNeuroML Documentation

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

1.3. API documentation 519

libNeuroML Documentation

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

520 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

SpikeGenerator

class neuroml.nml.nml.SpikeGenerator(id: a NonNegativeInteger (required) = None, metaid: a MetaId
(optional) = None, notes: a string (optional) = None, properties: list
of Property(s) (optional) = None, annotation: a Annotation
(optional) = None, period: a Nml2Quantity_time (required) = None,
gds_collector_=None, **kwargs_)

Bases: Standalone

SpikeGenerator – Simple generator of spikes at a regular interval set by period

Parameters
period (time) – Time between spikes. The first spike will be emitted after this time.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

1.3. API documentation 521

libNeuroML Documentation

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

522 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

1.3. API documentation 523

libNeuroML Documentation

Return type
None

Raises
ValueError – if component is invalid

SpikeGeneratorPoisson

class neuroml.nml.nml.SpikeGeneratorPoisson(id: a NonNegativeInteger (required) = None, metaid: a
MetaId (optional) = None, notes: a string (optional) =
None, properties: list of Property(s) (optional) = None,
annotation: a Annotation (optional) = None, average_rate:
a Nml2Quantity_pertime (required) = None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: Standalone

SpikeGeneratorPoisson – Generator of spikes whose ISI is distributed according to an exponential PDF with
scale: 1 / averageRate

Parameters
averageRate (per_time) – The average rate at which spikes are emitted

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

524 Chapter 1. User guide

libNeuroML Documentation

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

1.3. API documentation 525

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

526 Chapter 1. User guide

libNeuroML Documentation

SpikeGeneratorRandom

class neuroml.nml.nml.SpikeGeneratorRandom(id: a NonNegativeInteger (required) = None, metaid: a
MetaId (optional) = None, notes: a string (optional) = None,
properties: list of Property(s) (optional) = None,
annotation: a Annotation (optional) = None, max_isi: a
Nml2Quantity_time (required) = None, min_isi: a
Nml2Quantity_time (required) = None,
gds_collector_=None, **kwargs_)

Bases: Standalone

SpikeGeneratorRandom – Generator of spikes with a random interspike interval of at least minISI and at most
maxISI

Parameters

• maxISI (time) – Maximum interspike interval

• minISI (time) – Minimum interspike interval

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

1.3. API documentation 527

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

528 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 529

libNeuroML Documentation

SpikeGeneratorRefPoisson

class neuroml.nml.nml.SpikeGeneratorRefPoisson(id: a NonNegativeInteger (required) = None, metaid: a
MetaId (optional) = None, notes: a string (optional) =
None, properties: list of Property(s) (optional) = None,
annotation: a Annotation (optional) = None,
average_rate: a Nml2Quantity_pertime (required) =
None, minimum_isi: a Nml2Quantity_time (required) =
None, gds_collector_=None, **kwargs_)

Bases: SpikeGeneratorPoisson

SpikeGeneratorRefPoisson – Generator of spikes whose ISI distribution is the maximum entropy distribution
over [minimumISI, +infinity) with mean: 1 / averageRate

Parameters

• minimumISI (time) – The minimum interspike interval

• averageRate (per_time) – The average rate at which spikes are emitted

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

530 Chapter 1. User guide

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

1.3. API documentation 531

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

532 Chapter 1. User guide

libNeuroML Documentation

SpikeSourcePoisson

class neuroml.nml.nml.SpikeSourcePoisson(id: a NonNegativeInteger (required) = None, metaid: a MetaId
(optional) = None, notes: a string (optional) = None,
properties: list of Property(s) (optional) = None, annotation: a
Annotation (optional) = None, start: a Nml2Quantity_time
(required) = None, duration: a Nml2Quantity_time (required)
= None, rate: a Nml2Quantity_pertime (required) = None,
gds_collector_=None, **kwargs_)

Bases: Standalone

SpikeSourcePoisson – Spike source, generating spikes according to a Poisson process.

Parameters

• start (time) –

• duration (time) –

• rate (per_time) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

1.3. API documentation 533

libNeuroML Documentation

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

534 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 535

libNeuroML Documentation

SpikeThresh

class neuroml.nml.nml.SpikeThresh(value: a Nml2Quantity_voltage (required) = None, segment_groups: a
NmlId (optional) = 'all', gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

SpikeThresh – Membrane potential at which to emit a spiking event. Note, usually the spiking event will not be
emitted again until the membrane potential has fallen below this value and rises again to cross it in a positive
direction

Parameters
value (voltage) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

536 Chapter 1. User guide

libNeuroML Documentation

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

1.3. API documentation 537

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

Standalone

class neuroml.nml.nml.Standalone(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: Base

Standalone – Elements which can stand alone and be referenced by id, e.g. cell, morphology.

538 Chapter 1. User guide

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

1.3. API documentation 539

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

540 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

StateVariable

class neuroml.nml.nml.StateVariable(name: a string (required) = None, dimension: a string (required) =
None, description: a string (optional) = None, exposure: a string
(optional) = None, gds_collector_=None, **kwargs_)

Bases: NamedDimensionalVariable

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

1.3. API documentation 541

libNeuroML Documentation

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

542 Chapter 1. User guide

libNeuroML Documentation

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

1.3. API documentation 543

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

SubTree

class neuroml.nml.nml.SubTree(from_: a SegmentEndPoint (optional) = None, to: a SegmentEndPoint
(optional) = None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

SubTree – Include all the segment s distal to that specified by from in the segmentGroup

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

544 Chapter 1. User guide

libNeuroML Documentation

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

1.3. API documentation 545

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

546 Chapter 1. User guide

libNeuroML Documentation

SynapticConnection

class neuroml.nml.nml.SynapticConnection(neuro_lex_id: a NeuroLexId (optional) = None, from_: a string
(required) = None, to: a string (required) = None, synapse: a
string (required) = None, destination: a NmlId (optional) =
None, gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

SynapticConnection – Explicit event connection between named components, which gets processed via a new
instance of a synapse component which is created on the target component

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

1.3. API documentation 547

libNeuroML Documentation

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

548 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

TauInfTransition

class neuroml.nml.nml.TauInfTransition(id: a NmlId (required) = None, from_: a NmlId (required) =
None, to: a NmlId (required) = None, steady_state: a HHVariable
(required) = None, time_course: a HHTime (required) = None,
gds_collector_=None, **kwargs_)

Bases: Base

TauInfTransition – KS Transition specified in terms of time constant tau and steady state inf

1.3. API documentation 549

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

550 Chapter 1. User guide

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

1.3. API documentation 551

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

TimeDerivative

class neuroml.nml.nml.TimeDerivative(variable: a string (required) = None, value: a string (required) =
None, gds_collector_=None, **kwargs_)

Bases: GeneratedsSuper

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

552 Chapter 1. User guide

libNeuroML Documentation

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

1.3. API documentation 553

libNeuroML Documentation

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

554 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

TimedSynapticInput

class neuroml.nml.nml.TimedSynapticInput(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, synapse: a NmlId (required) = None,
spike_target: a string (required) = None, spikes: list of Spike(s)
(optional) = None, gds_collector_=None, **kwargs_)

Bases: Standalone

TimedSynapticInput – Spike array connected to a single synapse, producing a current triggered by each spike
in the array.

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

1.3. API documentation 555

libNeuroML Documentation

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,

556 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 557

libNeuroML Documentation

TransientPoissonFiringSynapse

class neuroml.nml.nml.TransientPoissonFiringSynapse(id: a NmlId (required) = None, metaid: a MetaId
(optional) = None, notes: a string (optional) =
None, properties: list of Property(s) (optional) =
None, annotation: a Annotation (optional) =
None, average_rate: a Nml2Quantity_pertime
(required) = None, delay: a Nml2Quantity_time
(required) = None, duration: a
Nml2Quantity_time (required) = None, synapse:
a string (required) = None, spike_target: a string
(required) = None, gds_collector_=None,
**kwargs_)

Bases: Standalone

TransientPoissonFiringSynapse – Poisson spike generator firing at averageRate after a delay and for a duration,
connected to single synapse that is triggered every time a spike is generated, providing an input current. Similar
to ComponentType poissonFiringSynapse .

Parameters

• averageRate (per_time) –

• delay (time) –

• duration (time) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

558 Chapter 1. User guide

libNeuroML Documentation

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

1.3. API documentation 559

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

560 Chapter 1. User guide

libNeuroML Documentation

Raises
ValueError – if component is invalid

UnstructuredLayout

class neuroml.nml.nml.UnstructuredLayout(number: a nonNegativeInteger (optional) = None,
gds_collector_=None, **kwargs_)

Bases: BaseWithoutId

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

1.3. API documentation 561

libNeuroML Documentation

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

562 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

VariableParameter

class neuroml.nml.nml.VariableParameter(parameter: a string (required) = None, segment_groups: a
string (required) = None, inhomogeneous_value: a
InhomogeneousValue (optional) = None, gds_collector_=None,
**kwargs_)

Bases: GeneratedsSuper

VariableParameter – Specifies a parameter (e. g. condDensity) which can vary its value across a segment-
Group. The value is calculated from value attribute of the inhomogeneousValue subelement. This element

1.3. API documentation 563

libNeuroML Documentation

is normally a child of channelDensityNonUniform , channelDensityNonUniformNernst or channelDensi-
tyNonUniformGHK and is used to calculate the value of the conductance, etc. which will vary on different
parts of the cell. The segmentGroup specified here needs to define an inhomogeneousParameter (referenced
from inhomogeneousParameter in the inhomogeneousValue), which calculates a variable (e. g. p) varying
across the cell (e. g. based on the path length from soma), which is then used in the value attribute of the
inhomogeneousValue (so for example condDensity = f(p))

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

564 Chapter 1. User guide

libNeuroML Documentation

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

1.3. API documentation 565

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

VoltageClamp

class neuroml.nml.nml.VoltageClamp(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None, delay:
a Nml2Quantity_time (required) = None, duration: a
Nml2Quantity_time (required) = None, target_voltage: a
Nml2Quantity_voltage (required) = None, simple_series_resistance: a
Nml2Quantity_resistance (required) = None, gds_collector_=None,
**kwargs_)

Bases: Standalone

VoltageClamp – Voltage clamp. Applies a variable current i to try to keep parent at targetVoltage. Not yet fully
tested!!! Consider using voltageClampTriple!!

Parameters

• delay (time) – Delay before change in current. Current is zero prior to this.

566 Chapter 1. User guide

libNeuroML Documentation

• duration (time) – Duration for attempting to keep parent at targetVoltage. Current is zero
after delay + duration.

• targetVoltage (voltage) – Current will be applied to try to get parent to this target voltage

• simpleSeriesResistance (resistance) – Current will be calculated by the difference
in voltage between the target and parent, divided by this value

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

1.3. API documentation 567

libNeuroML Documentation

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

568 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

VoltageClampTriple

class neuroml.nml.nml.VoltageClampTriple(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, active: a ZeroOrOne (required) = None,
delay: a Nml2Quantity_time (required) = None, duration: a
Nml2Quantity_time (required) = None, conditioning_voltage:
a Nml2Quantity_voltage (required) = None, testing_voltage: a
Nml2Quantity_voltage (required) = None, return_voltage: a
Nml2Quantity_voltage (required) = None,
simple_series_resistance: a Nml2Quantity_resistance
(required) = None, gds_collector_=None, **kwargs_)

Bases: Standalone

VoltageClampTriple – Voltage clamp with 3 clamp levels. Applies a variable current i (through simpleSeries-
Resistance) to try to keep parent cell at conditioningVoltage until time delay, testingVoltage until delay +
duration, and returnVoltage afterwards. Only enabled if active = 1.

1.3. API documentation 569

libNeuroML Documentation

Parameters

• active (none) – Whether the voltage clamp is active (1) or inactive (0).

• delay (time) – Delay before switching from conditioningVoltage to testingVoltage.

• duration (time) – Duration to hold at testingVoltage.

• conditioningVoltage (voltage) – Target voltage before time delay

• testingVoltage (voltage) – Target voltage between times delay and delay + duration

• returnVoltage (voltage) – Target voltage after time duration

• simpleSeriesResistance (resistance) – Current will be calculated by the difference
in voltage between the target and parent, divided by this value

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

570 Chapter 1. User guide

libNeuroML Documentation

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

1.3. API documentation 571

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

basePyNNCell

class neuroml.nml.nml.basePyNNCell(id: a NmlId (required) = None, metaid: a MetaId (optional) = None,
notes: a string (optional) = None, properties: list of Property(s)
(optional) = None, annotation: a Annotation (optional) = None,
neuro_lex_id: a NeuroLexId (optional) = None, cm: a float (required)
= None, i_offset: a float (required) = None, tau_syn_E: a float
(required) = None, tau_syn_I: a float (required) = None, v_init: a float
(required) = None, extensiontype_=None, gds_collector_=None,
**kwargs_)

572 Chapter 1. User guide

libNeuroML Documentation

Bases: BaseCell

basePyNNCell – Base type of any PyNN standard cell model. Note: membrane potential v has dimen-
sions voltage, but all other parameters are dimensionless. This is to facilitate translation to and from PyNN
scripts in Python, where these parameters have implicit units, see http://neuralensemble.org/trac/PyNN/wiki/
StandardModels

Parameters

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

1.3. API documentation 573

http://neuralensemble.org/trac/PyNN/wiki/StandardModels
http://neuralensemble.org/trac/PyNN/wiki/StandardModels

libNeuroML Documentation

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

574 Chapter 1. User guide

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3. API documentation 575

libNeuroML Documentation

basePyNNIaFCell

class neuroml.nml.nml.basePyNNIaFCell(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation (optional)
= None, neuro_lex_id: a NeuroLexId (optional) = None, cm: a float
(required) = None, i_offset: a float (required) = None, tau_syn_E:
a float (required) = None, tau_syn_I: a float (required) = None,
v_init: a float (required) = None, tau_m: a float (required) = None,
tau_refrac: a float (required) = None, v_reset: a float (required) =
None, v_rest: a float (required) = None, v_thresh: a float (required)
= None, extensiontype_=None, gds_collector_=None, **kwargs_)

Bases: basePyNNCell

basePyNNIaFCell – Base type of any PyNN standard integrate and fire model

Parameters

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

576 Chapter 1. User guide

libNeuroML Documentation

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

1.3. API documentation 577

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

578 Chapter 1. User guide

libNeuroML Documentation

Returns
None

Return type
None

Raises
ValueError – if component is invalid

basePyNNIaFCondCell

class neuroml.nml.nml.basePyNNIaFCondCell(id: a NmlId (required) = None, metaid: a MetaId (optional) =
None, notes: a string (optional) = None, properties: list of
Property(s) (optional) = None, annotation: a Annotation
(optional) = None, neuro_lex_id: a NeuroLexId (optional) =
None, cm: a float (required) = None, i_offset: a float
(required) = None, tau_syn_E: a float (required) = None,
tau_syn_I: a float (required) = None, v_init: a float (required)
= None, tau_m: a float (required) = None, tau_refrac: a float
(required) = None, v_reset: a float (required) = None, v_rest:
a float (required) = None, v_thresh: a float (required) = None,
e_rev_E: a float (required) = None, e_rev_I: a float (required)
= None, extensiontype_=None, gds_collector_=None,
**kwargs_)

Bases: basePyNNIaFCell

basePyNNIaFCondCell – Base type of conductance based PyNN IaF cell models

Parameters

• e_rev_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• e_rev_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_refrac (none) –

• v_thresh (none) –

• tau_m (none) –

• v_rest (none) –

• v_reset (none) –

• cm (none) –

• i_offset (none) –

• tau_syn_E (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• tau_syn_I (none) – This parameter is never used in the NeuroML2 description of this cell!
Any synapse producing a current can be placed on this cell

• v_init (none) –

1.3. API documentation 579

libNeuroML Documentation

add(obj=None, hint=None, force=False, validate=True, **kwargs)
Generic function to allow easy addition of a new member to a NeuroML object. Without arguments, when
obj=None, it simply calls the info() method to provide the list of valid member types for the NeuroML class.

Please use the info() method directly for more information on the current contents of this component object.

When obj is given a string name of a NeuroML class (“NeuroMLDocument”), or the class itself (neu-
roml.NeuroMLDocument), a new object will be created of this type and added as a member to the calling
(parent) component type object.

Parameters

• obj (Object) – member object or class type (neuroml.NeuroMLDocument) or name of
class type (“NeuroMLDocument”), or None

• hint (string) – member name to add to when there are multiple members that obj can
be added to

• force (bool) – boolean to force addition when an obj has already been added previously

• validate (bool) – validate component after adding (default: True)

Returns obj
the provided or created object

Raises

• Exception – if a member compatible to obj could not be found

• Exception – if multiple members can accept the object and no hint is provided.

classmethod component_factory(component_type, validate=True, **kwargs)
Factory function to create a NeuroML Component object.

Users can provide the name of the component as a string or the class variable, along with its named con-
structor arguments, and this function will create a new object of the Component and return it.

Users can use the add() helper function to further modify components

This factory runs two checks while creating the component object:

• that all arguments given do belong to the ComponentType (useful for caching typos)

• that the created component is valid NeuroML

It is therefore less error prone than creating Components directly using the ComponentType constructors.

It may be useful to disable validation when starting a model. The validate parameter can be set to False for
this.

Parameters

• component_type (str/type) – component type to create component from: this can either
be the name of the component as a string, e.g. “NeuroMLDocument”, or it can be the class
type itself: NeuroMLDocument. Note that when providing the class type, one will need
to import it, e.g.: import NeuroMLDocument, to ensure that it is defined, whereas this will
not be required when using the string.

• validate (bool) – toggle validation (default: True)

• kwargs (named arguments) – named arguments to be passed to ComponentType con-
structor

Returns
new Component (object) of provided ComponentType

580 Chapter 1. User guide

libNeuroML Documentation

Return type
object

Raises
ValueError – if validation/checks fail

info(show_contents=False, return_format='string')
Provide information on NeuroML component.

This is useful to quickly check what members can go into a particular NeuroML class (which will match
the Schema definitions). It lists these members and notes whether they are “single” type elements (Child
elements) or “List” elements (Children elements). It will also note whether a member is optional or re-
quired.

To get a list of possible parents, use the parentinfo() method.

By default, this will only show the members, and not their contents. To see contents that have been set, use
show_contents=True. This will not show empty/unset contents. To see all contents, set show_contents=all.

Note that not all members will have ids (since not all NeuroML2 ComponentTypes have ids). For members
that do not have ids, the object reference is listed instead.

See http://www.davekuhlman.org/generateDS.html#user-methods for more information on the Member-
Spec_ class that generateDS uses.

Parameters

• show_contents (bool or str) – toggle to print out the contents of the members

• return_format (str) – select what format to return information in “string” (default), or
“dict” or “list”.

If “dict” or “list” is provided, the information is returned as a dict/list instead of being
printed. Note that if show_contents is False, only a list of members is available and will be
returned even if “dict” is supplied. If show_contents is True or “all” but “list” is provided,
only the list of members will be returned. If something other than “string”, “list”, or “dict”
is provided, the string representation is returned and printed.

Returns
info string, or list of members or dict with members as keys and member values as values

Return type
str, list/dict

parentinfo(return_format='string')
Show the list of possible parents.

This object can then be added to objects of the parents using the add method.

It is similar to the info() method. However, where in the info() method, it is possible to find the contents of
members for a component (object) rather easily, it is not so easily possible to get all the objects that may
refer to another object.

So, this will provide information on possible parents. It will not provide information on whether the com-
ponents (objects) of the particular parent have already been instantiated and what their values are. The user
should be able to gather this information easily by reading the sources.

Please also note that various component types in NeuroML take ids of components as parameters. For
example, an ExplicitInput will take the id of a cell as its target, and the id of a PulseGenerator as input.
However, these are string fields, and the cell/pulse generator classes do not currently know that their ids
can be used in ExplicitInput. This information does not live in the XSD schema, and so cannot be obtained
here either.

1.3. API documentation 581

http://www.davekuhlman.org/generateDS.html#user-methods

libNeuroML Documentation

Parameters
return_format (str) – format in which to return information. If “string” (default), an
information string is returned. If “list” or “dict”, a list or dictionary is returned. The list will
only contain the parent names, whereas the dict will also include the member of the parent
that the component type matches to.

Returns
info string, or list of parents or dict with parents as keys and member information as values

Return type
str, list/dict

validate(recursive=False)
Validate the component.

Throws a Python ValueError if a the component is invalid. You can ignore this by using a try .. except
ValueError: pass block.

Note: validating your NeuroML file against the schema, which pynml and jnml do, will also check this.

Note: that this is different from the validate_ method, which does not validate inherited members.

Parameters
recursive (bool) – toggle recursive validation (default: False)

Returns
None

Return type
None

Raises
ValueError – if component is invalid

1.3.2 loaders Module

class neuroml.loaders.ArrayMorphLoader

Bases: object

classmethod load(filepath)
Right now this load method isn’t done in a very nice way. TODO: Complete refactoring.

class neuroml.loaders.NeuroMLHdf5Loader

Bases: object

classmethod load(src, optimized=False)

class neuroml.loaders.NeuroMLLoader

Bases: object

classmethod load(src)

class neuroml.loaders.SWCLoader

Bases: object

WARNING: Class defunct

classmethod load_swc_single(src, name=None)

582 Chapter 1. User guide

libNeuroML Documentation

neuroml.loaders.print_(text, verbose=True)

neuroml.loaders.read_neuroml2_file(nml2_file_name: str, include_includes: bool = False, verbose: bool =
False, already_included: ~typing.Optional[list] = None, print_method:
~typing.Callable = <function print_>, optimized: bool = False)→
NeuroMLDocument

Read a NeuroML2 file into a NeuroMLDocument object

Parameters

• nml2_file_name (str) – name of NeuroML file to read

• include_includes (bool) – toggle whether Included files should also be loaded

• verbose (bool) – toggle verbose output

• already_included (list) – list of already included files

• print_method (Callable) – print function to use

• optimised (bool) – for optimised HDF5 NeuroML files

Returns
NeuroMLDoc object containing the read file

neuroml.loaders.read_neuroml2_string(nml2_string: str, include_includes: bool = False, verbose: bool =
False, already_included: list = [], print_method: ~typing.Callable
= <function print_>, optimized: bool = False, base_path:
~typing.Optional[str] = None)→ NeuroMLDocument

Read a NeuroML2 string into a NeuroMLDocument object

Parameters

• nml2_string (str) – NeuroML string to load

• include_includes (bool) – toggle whether Included files should also be loaded

• verbose (bool) – toggle verbose output

• already_included (list) – list of already included files

• print_method (Callable) – print function to use

• optimised (bool) – for optimised HDF5 NeuroML files

• base_path (str) –

Returns
NeuroMLDoc object containing the model

1.3.3 writers Module

class neuroml.writers.ArrayMorphWriter

Bases: object

For now just testing a simple method which can write a morphology, not a NeuroMLDocument.

classmethod write(data, filepath)

class neuroml.writers.NeuroMLHdf5Writer

Bases: object

1.3. API documentation 583

libNeuroML Documentation

classmethod write(nml_doc, h5_file_name, embed_xml=True, compress=True)

class neuroml.writers.NeuroMLWriter

Bases: object

classmethod write(nmldoc, file, close=True)
Writes from NeuroMLDocument to nml file in future can implement from other types via chain of respon-
sibility pattern.

1.3.4 utils Module

Utilities for checking generated code

neuroml.utils.add_all_to_document(nml_doc_src: NeuroMLDocument, nml_doc_tgt: NeuroMLDocument,
verbose: bool = False)→ None

Add all members of the source NeuroML document to the target NeuroML document.

Parameters

• nml_doc_src (NeuroMLDocument) – source NeuroML document to copy from

• nml_doc_tgt (NeuroMLDocument) – target NeuroML document to copy to

• verbose (bool) – control verbosity of working

Raises
Exception – if a member could not be copied.

neuroml.utils.append_to_element(parent, child)
Append a child element to a parent Component

Parameters

• parent (Object) – parent NeuroML component to add element to

• child (Object) – child NeuroML component to be added to parent

Raises
Exception – when the child could not be added to the parent

neuroml.utils.component_factory(component_type: Union[str, type], validate: bool = True, **kwargs: Any)
→ Any

Factory function to create a NeuroML Component object.

Wrapper around the component_factory method that is present in each NeuroML component type class.

Please see GeneratedsSuperSuper.component_factory for more information.

neuroml.utils.ctinfo(component_type)
Provide information on any neuroml Component Type class.

This creates a new object (component) of the component type and call its info() method.

Parameters
component_type (str or type) – component type to print information for, either a string (the
name) or the class itself

Returns
informatin string

Return type
str

584 Chapter 1. User guide

libNeuroML Documentation

neuroml.utils.ctparentinfo(component_type)
Provide information on the parentage of any NeuroML Component Type class.

This creates a new object (component) of the component type and call its parentinfo() method.

Parameters
component_type (str or type) – component type to print information for, either a string (the
name) or the class itself

Returns
information string

Return type
str

neuroml.utils.get_summary(nml_file_name: str)→ str
Get a summary of the given NeuroML file.

Parameters
nml_file_name (str) – name of NeuroML file to get summary of

Returns
summary of provided file

Return type
str

neuroml.utils.has_segment_fraction_info(connections: list)→ bool
Check if connections include fraction information

Parameters
connections (list) – list of connection objects

Returns
True if connections include fragment information, otherwise False

Return type
Boolean

neuroml.utils.is_valid_neuroml2(file_name: str)→ None
Check if a file is valid NeuroML2.

Parameters
file_name (str) – name of NeuroML file to check

Returns
True if file is valid, False if not.

Return type
Boolean

neuroml.utils.main()

neuroml.utils.print_summary(nml_file_name: str)→ None
Print a summary of the NeuroML model in the given file.

Parameters
nml_file_name (str) – name of NeuroML file to print summary of

neuroml.utils.validate_neuroml2(file_name: str)→ None
Validate a NeuroML document against the NeuroML schema specification.

1.3. API documentation 585

libNeuroML Documentation

Parameters
file_name (str) – name of NeuroML file to validate.

Raises
ValueError – if document is invalid

1.3.5 arraymorph Module

1.4 Examples

The examples in this section are intended to give in depth overviews of how to accomplish specific tasks with libNeu-
roML.

These examples are located in the neuroml/examples directory and can be tested to confirm they work by running the
run_all.py script.

Examples

• Examples

– Creating a NeuroML morphology

– Loading and modifying a file

– Building a network

– Building a 3D network

– Ion channels

– PyNN models

– Synapses

– Working with arraymorphs

– Working with Izhikevich Cells

1.4.1 Creating a NeuroML morphology

"""
Example of connecting segments together to create a
multicompartmental model of a cell.
"""

import neuroml
import neuroml.writers as writers

p = neuroml.Point3DWithDiam(x=0, y=0, z=0, diameter=50)
d = neuroml.Point3DWithDiam(x=50, y=0, z=0, diameter=50)
soma = neuroml.Segment(proximal=p, distal=d)
soma.name = "Soma"
soma.id = 0

(continues on next page)

586 Chapter 1. User guide

libNeuroML Documentation

(continued from previous page)

Make an axon with 100 compartments:

parent = neuroml.SegmentParent(segments=soma.id)
parent_segment = soma
axon_segments = []
seg_id = 1

for i in range(100):
p = neuroml.Point3DWithDiam(

x=parent_segment.distal.x,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1,

)

d = neuroml.Point3DWithDiam(
x=parent_segment.distal.x + 10,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1,

)

axon_segment = neuroml.Segment(proximal=p, distal=d, parent=parent)

axon_segment.id = seg_id

axon_segment.name = "axon_segment_" + str(axon_segment.id)

now reset everything:
parent = neuroml.SegmentParent(segments=axon_segment.id)
parent_segment = axon_segment
seg_id += 1

axon_segments.append(axon_segment)

test_morphology = neuroml.Morphology()
test_morphology.segments.append(soma)
test_morphology.segments += axon_segments
test_morphology.id = "TestMorphology"

cell = neuroml.Cell()
cell.name = "TestCell"
cell.id = "TestCell"
cell.morphology = test_morphology

doc = neuroml.NeuroMLDocument(id="TestNeuroMLDocument")

doc.cells.append(cell)

nml_file = "tmp/testmorphwrite.nml"

(continues on next page)

1.4. Examples 587

libNeuroML Documentation

(continued from previous page)

writers.NeuroMLWriter.write(doc, nml_file)

print("Written morphology file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

1.4.2 Loading and modifying a file

"""
In this example an axon is built, a morphology is loaded, the axon is
then connected to the loadeed morphology.
"""

import neuroml
import neuroml.loaders as loaders
import neuroml.writers as writers

fn = "./test_files/Purk2M9s.nml"
doc = loaders.NeuroMLLoader.load(fn)
print("Loaded morphology file from: " + fn)

get the parent segment:
parent_segment = doc.cells[0].morphology.segments[0]

parent = neuroml.SegmentParent(segments=parent_segment.id)

make an axon:
seg_id = 5000 # need a way to get a unique id from a morphology
axon_segments = []
for i in range(10):

p = neuroml.Point3DWithDiam(
x=parent_segment.distal.x,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1,

)

d = neuroml.Point3DWithDiam(
x=parent_segment.distal.x + 10,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1,

)

axon_segment = neuroml.Segment(proximal=p, distal=d, parent=parent)

(continues on next page)

588 Chapter 1. User guide

libNeuroML Documentation

(continued from previous page)

axon_segment.id = seg_id

axon_segment.name = "axon_segment_" + str(axon_segment.id)

now reset everything:
parent = neuroml.SegmentParent(segments=axon_segment.id)
parent_segment = axon_segment
seg_id += 1

axon_segments.append(axon_segment)

doc.cells[0].morphology.segments += axon_segments

nml_file = "./tmp/modified_morphology.nml"

writers.NeuroMLWriter.write(doc, nml_file)

print("Saved modified morphology file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

1.4.3 Building a network

"""

Example to build a full spiking IaF network
through libNeuroML, save it as XML and validate it

"""

from neuroml import NeuroMLDocument
from neuroml import IafCell
from neuroml import Network
from neuroml import ExpOneSynapse
from neuroml import Population
from neuroml import PulseGenerator
from neuroml import ExplicitInput
from neuroml import SynapticConnection
import neuroml.writers as writers
from random import random

nml_doc = NeuroMLDocument(id="IafNet")

IafCell0 = IafCell(
(continues on next page)

1.4. Examples 589

libNeuroML Documentation

(continued from previous page)

id="iaf0",
C="1.0 nF",
thresh="-50mV",
reset="-65mV",
leak_conductance="10 nS",
leak_reversal="-65mV",

)

nml_doc.iaf_cells.append(IafCell0)

IafCell1 = IafCell(
id="iaf1",
C="1.0 nF",
thresh="-50mV",
reset="-65mV",
leak_conductance="20 nS",
leak_reversal="-65mV",

)

nml_doc.iaf_cells.append(IafCell1)

syn0 = ExpOneSynapse(id="syn0", gbase="65nS", erev="0mV", tau_decay="3ms")

nml_doc.exp_one_synapses.append(syn0)

net = Network(id="IafNet")

nml_doc.networks.append(net)

size0 = 5
pop0 = Population(id="IafPop0", component=IafCell0.id, size=size0)

net.populations.append(pop0)

size1 = 5
pop1 = Population(id="IafPop1", component=IafCell0.id, size=size1)

net.populations.append(pop1)

prob_connection = 0.5

for pre in range(0, size0):

pg = PulseGenerator(
id="pulseGen_%i" % pre,
delay="0ms",
duration="100ms",
amplitude="%f nA" % (0.1 * random()),

)

nml_doc.pulse_generators.append(pg)

(continues on next page)

590 Chapter 1. User guide

libNeuroML Documentation

(continued from previous page)

exp_input = ExplicitInput(target="%s[%i]" % (pop0.id, pre), input=pg.id)

net.explicit_inputs.append(exp_input)

for post in range(0, size1):
fromxx is used since from is Python keyword
if random() <= prob_connection:

syn = SynapticConnection(
from_="%s[%i]" % (pop0.id, pre),
synapse=syn0.id,
to="%s[%i]" % (pop1.id, post),

)
net.synaptic_connections.append(syn)

nml_file = "tmp/testnet.nml"
writers.NeuroMLWriter.write(nml_doc, nml_file)

print("Written network file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

1.4.4 Building a 3D network

"""

Example to build a full spiking IaF network throught libNeuroML & save it as XML &␣
→˓validate it

"""

from neuroml import NeuroMLDocument
from neuroml import Network
from neuroml import ExpOneSynapse
from neuroml import Population
from neuroml import Property
from neuroml import Cell
from neuroml import Location
from neuroml import Instance
from neuroml import Morphology
from neuroml import Point3DWithDiam
from neuroml import Segment
from neuroml import SegmentParent
from neuroml import Projection
from neuroml import Connection

(continues on next page)

1.4. Examples 591

libNeuroML Documentation

(continued from previous page)

import neuroml.writers as writers
from random import random

soma_diam = 10
soma_len = 10
dend_diam = 2
dend_len = 10
dend_num = 10

def generateRandomMorphology():

morphology = Morphology()

p = Point3DWithDiam(x=0, y=0, z=0, diameter=soma_diam)
d = Point3DWithDiam(x=soma_len, y=0, z=0, diameter=soma_diam)
soma = Segment(proximal=p, distal=d, name="Soma", id=0)

morphology.segments.append(soma)
parent_seg = soma

for dend_id in range(0, dend_num):

p = Point3DWithDiam(x=d.x, y=d.y, z=d.z, diameter=dend_diam)
d = Point3DWithDiam(x=p.x, y=p.y + dend_len, z=p.z, diameter=dend_diam)
dend = Segment(proximal=p, distal=d, name="Dend_%i" % dend_id, id=1 + dend_id)
dend.parent = SegmentParent(segments=parent_seg.id)
parent_seg = dend

morphology.segments.append(dend)

morphology.id = "TestMorphology"

return morphology

def run():

cell_num = 10
x_size = 500
y_size = 500
z_size = 500

nml_doc = NeuroMLDocument(id="Net3DExample")

syn0 = ExpOneSynapse(id="syn0", gbase="65nS", erev="0mV", tau_decay="3ms")
nml_doc.exp_one_synapses.append(syn0)

net = Network(id="Net3D")
nml_doc.networks.append(net)

(continues on next page)

592 Chapter 1. User guide

libNeuroML Documentation

(continued from previous page)

proj_count = 0
conn_count = 0

for cell_id in range(0, cell_num):

cell = Cell(id="Cell_%i" % cell_id)

cell.morphology = generateRandomMorphology()

nml_doc.cells.append(cell)

pop = Population(
id="Pop_%i" % cell_id, component=cell.id, type="populationList"

)
net.populations.append(pop)
pop.properties.append(Property(tag="color", value="1 0 0"))

inst = Instance(id="0")
pop.instances.append(inst)

inst.location = Location(
x=str(x_size * random()), y=str(y_size * random()), z=str(z_size * random())

)

prob_connection = 0.5
for post in range(0, cell_num):

if post is not cell_id and random() <= prob_connection:

from_pop = "Pop_%i" % cell_id
to_pop = "Pop_%i" % post

pre_seg_id = 0
post_seg_id = 1

projection = Projection(
id="Proj_%i" % proj_count,
presynaptic_population=from_pop,
postsynaptic_population=to_pop,
synapse=syn0.id,

)
net.projections.append(projection)
connection = Connection(

id=proj_count,
pre_cell_id="%s[%i]" % (from_pop, 0),
pre_segment_id=pre_seg_id,
pre_fraction_along=random(),
post_cell_id="%s[%i]" % (to_pop, 0),
post_segment_id=post_seg_id,
post_fraction_along=random(),

)

projection.connections.append(connection)

(continues on next page)

1.4. Examples 593

libNeuroML Documentation

(continued from previous page)

proj_count += 1
net.synaptic_connections.append(SynapticConnection(from_="%s[%i]"

→˓%(from_pop,0), to="%s[%i]"%(to_pop,0)))

####### Write to file ######

nml_file = "tmp/net3d.nml"
writers.NeuroMLWriter.write(nml_doc, nml_file)

print("Written network file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

run()

1.4.5 Ion channels

"""
Generating a Hodgkin-Huxley Ion Channel and writing it to NeuroML
"""

import neuroml
import neuroml.writers as writers

chan = neuroml.IonChannelHH(
id="na",
conductance="10pS",
species="na",
notes="This is an example voltage-gated Na channel",

)

m_gate = neuroml.GateHHRates(id="m", instances="3")
h_gate = neuroml.GateHHRates(id="h", instances="1")

m_gate.forward_rate = neuroml.HHRate(
type="HHExpRate", rate="0.07per_ms", midpoint="-65mV", scale="-20mV"

)

m_gate.reverse_rate = neuroml.HHRate(
type="HHSigmoidRate", rate="1per_ms", midpoint="-35mV", scale="10mV"

)

h_gate.forward_rate = neuroml.HHRate(
type="HHExpLinearRate", rate="0.1per_ms", midpoint="-55mV", scale="10mV"

)
(continues on next page)

594 Chapter 1. User guide

libNeuroML Documentation

(continued from previous page)

h_gate.reverse_rate = neuroml.HHRate(
type="HHExpRate", rate="0.125per_ms", midpoint="-65mV", scale="-80mV"

)

chan.gate_hh_rates.append(m_gate)
chan.gate_hh_rates.append(h_gate)

doc = neuroml.NeuroMLDocument()
doc.ion_channel_hhs.append(chan)

doc.id = "ChannelMLDemo"

nml_file = "./tmp/ionChannelTest.xml"
writers.NeuroMLWriter.write(doc, nml_file)

print("Written channel file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

1.4.6 PyNN models

"""

Example to build a PyNN based network

"""

from neuroml import NeuroMLDocument
from neuroml import *
import neuroml.writers as writers
from random import random

######################## Build the network ####################################

nml_doc = NeuroMLDocument(id="IafNet")

pynn0 = IF_curr_alpha(
id="IF_curr_alpha_pop_IF_curr_alpha",
cm="1.0",
i_offset="0.9",
tau_m="20.0",
tau_refrac="10.0",

(continues on next page)

1.4. Examples 595

libNeuroML Documentation

(continued from previous page)

tau_syn_E="0.5",
tau_syn_I="0.5",
v_init="-65",
v_reset="-62.0",
v_rest="-65.0",
v_thresh="-52.0",

)
nml_doc.IF_curr_alpha.append(pynn0)

pynn1 = HH_cond_exp(
id="HH_cond_exp_pop_HH_cond_exp",
cm="0.2",
e_rev_E="0.0",
e_rev_I="-80.0",
e_rev_K="-90.0",
e_rev_Na="50.0",
e_rev_leak="-65.0",
g_leak="0.01",
gbar_K="6.0",
gbar_Na="20.0",
i_offset="0.2",
tau_syn_E="0.2",
tau_syn_I="2.0",
v_init="-65",
v_offset="-63.0",

)
nml_doc.HH_cond_exp.append(pynn1)

pynnSynn0 = ExpCondSynapse(id="ps1", tau_syn="5", e_rev="0")
nml_doc.exp_cond_synapses.append(pynnSynn0)

nml_file = "tmp/pynn_network.xml"
writers.NeuroMLWriter.write(nml_doc, nml_file)
print("Saved to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

596 Chapter 1. User guide

libNeuroML Documentation

1.4.7 Synapses

"""

Example to create a file with multiple synapse types

"""

from neuroml import NeuroMLDocument
from neuroml import *
import neuroml.writers as writers
from random import random

nml_doc = NeuroMLDocument(id="SomeSynapses")

expOneSyn0 = ExpOneSynapse(id="ampa", tau_decay="5ms", gbase="1nS", erev="0mV")
nml_doc.exp_one_synapses.append(expOneSyn0)

expTwoSyn0 = ExpTwoSynapse(
id="gaba", tau_decay="12ms", tau_rise="3ms", gbase="1nS", erev="-70mV"

)
nml_doc.exp_two_synapses.append(expTwoSyn0)

bpSyn = BlockingPlasticSynapse(
id="blockStpSynDep", gbase="1nS", erev="0mV", tau_rise="0.1ms", tau_decay="2ms"

)
bpSyn.notes = "This is a note"
bpSyn.plasticity_mechanism = PlasticityMechanism(

type="tsodyksMarkramDepMechanism", init_release_prob="0.5", tau_rec="120 ms"
)
bpSyn.block_mechanism = BlockMechanism(

type="voltageConcDepBlockMechanism",
species="mg",
block_concentration="1.2 mM",
scaling_conc="1.920544 mM",
scaling_volt="16.129 mV",

)

nml_doc.blocking_plastic_synapses.append(bpSyn)

nml_file = "tmp/synapses.xml"
writers.NeuroMLWriter.write(nml_doc, nml_file)
print("Saved to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

1.4. Examples 597

libNeuroML Documentation

1.4.8 Working with arraymorphs

"""
Example of connecting segments together to create a
multicompartmental model of a cell.

In this case ArrayMorphology will be used rather than
Morphology - demonstrating its similarity and
ability to save in HDF5 format
"""

import neuroml
import neuroml.writers as writers
import neuroml.arraymorph as am

p = neuroml.Point3DWithDiam(x=0, y=0, z=0, diameter=50)
d = neuroml.Point3DWithDiam(x=50, y=0, z=0, diameter=50)
soma = neuroml.Segment(proximal=p, distal=d)
soma.name = "Soma"
soma.id = 0

now make an axon with 100 compartments:

parent = neuroml.SegmentParent(segments=soma.id)
parent_segment = soma
axon_segments = []
seg_id = 1
for i in range(100):

p = neuroml.Point3DWithDiam(
x=parent_segment.distal.x,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1,

)

d = neuroml.Point3DWithDiam(
x=parent_segment.distal.x + 10,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1,

)

axon_segment = neuroml.Segment(proximal=p, distal=d, parent=parent)

axon_segment.id = seg_id

axon_segment.name = "axon_segment_" + str(axon_segment.id)

now reset everything:
parent = neuroml.SegmentParent(segments=axon_segment.id)
parent_segment = axon_segment
seg_id += 1

(continues on next page)

598 Chapter 1. User guide

libNeuroML Documentation

(continued from previous page)

axon_segments.append(axon_segment)

test_morphology = am.ArrayMorphology()
test_morphology.segments.append(soma)
test_morphology.segments += axon_segments
test_morphology.id = "TestMorphology"

cell = neuroml.Cell()
cell.name = "TestCell"
cell.id = "TestCell"
cell.morphology = test_morphology

doc = neuroml.NeuroMLDocument()
doc.name = "Test neuroML document"

doc.cells.append(cell)
doc.id = "TestNeuroMLDocument"

nml_file = "tmp/arraymorph.nml"

writers.NeuroMLWriter.write(doc, nml_file)

print("Written morphology file to: " + nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2(nml_file)

1.4.9 Working with Izhikevich Cells

These examples were kindly contributed by Steve Marsh

from neuroml import NeuroMLDocument
from neuroml import IzhikevichCell
from neuroml.loaders import NeuroMLLoader
from neuroml.utils import validate_neuroml2

def load_izhikevich(filename="./test_files/SingleIzhikevich.nml"):
nml_filename = filename
validate_neuroml2(nml_filename)
nml_doc = NeuroMLLoader.load(nml_filename)

iz_cells = nml_doc.izhikevich_cells
for i, iz in enumerate(iz_cells):

if isinstance(iz, IzhikevichCell):
neuron_string = "%d %s %s %s %s %s (%s)" % (

i,
(continues on next page)

1.4. Examples 599

libNeuroML Documentation

(continued from previous page)

iz.v0,
iz.a,
iz.b,
iz.c,
iz.d,
iz.id,

)
print(neuron_string)

else:
print("Error: Cell %d is not an IzhikevichCell" % i)

load_izhikevich()

from neuroml import NeuroMLDocument
from neuroml import IzhikevichCell
from neuroml.writers import NeuroMLWriter
from neuroml.utils import validate_neuroml2

def write_izhikevich(filename="./tmp/SingleIzhikevich_test.nml"):
nml_doc = NeuroMLDocument(id="SingleIzhikevich")
nml_filename = filename

iz0 = IzhikevichCell(
id="iz0", v0="-70mV", thresh="30mV", a="0.02", b="0.2", c="-65.0", d="6"

)

nml_doc.izhikevich_cells.append(iz0)

NeuroMLWriter.write(nml_doc, nml_filename)
validate_neuroml2(nml_filename)

write_izhikevich()

1.5 References

600 Chapter 1. User guide

CHAPTER

TWO

CONTRIBUTING

2.1 How to contribute

libNeuroML development happens on GitHub, so you will need a GitHub account to contribute to the repository.
Contributions are made using the standard Pull Request workflow.

2.1.1 Setting up

Please take a look at the GitHub documentation here: http://help.github.com/fork-a-repo/

To begin, please fork the repo on the GitHub website. You should now have a libNeuroML under you username. Next,
we clone our fork to get a local copy on our computer:

git clone git@github.com:_username_/libNeuroML.git

While not necessary, it is good practice to add the upstream repository as a remote that you will follow:

cd libNeuroML
git remote add upstream https://github.com/NeuralEnsemble/libNeuroML.git
git fetch upstream

You can check which branch are you following doing:

git branch -a

You should have something like:

git branch -a
* master
remotes/origin/HEAD -> origin/master
remotes/origin/master
remotes/upstream/master

601

http://help.github.com/send-pull-requests/
http://help.github.com/fork-a-repo/

libNeuroML Documentation

2.1.2 Sync with upstream

Before starting to do some work, please check to see that you have the latest copy of the sources in your local repository:

git fetch upstream
git checkout development
git merge upstream/development

2.1.3 Working locally on a dedicated branch

Now that we have a fork, we can start making our changes to the source code. The best way to do it is to create a
branch with a descriptive name to indicate what are you working on. Generally, your will branch off from the upstream
development branch, which will contain the latest code.

For example, just for the sake of this guide, I’m going to work on issue #2.

git checkout development
git checkout -b fix-2

We can work in this branch, and make as many commits as we need to:

hack hack hack
git commit -am "some decent commit message here"

Once we have finished working, we can push the branch online to our fork:

git push origin fix-2

We can then open a pull-request to merge our fix-2 branch into upstream/development. If your code is not ready
to be included, you can update the code on your branch and any more commits you add there will be added to the Pull
Request. Members of the libNeuroML development team will then discuss your changes with you, perhaps suggest
tweaks, and then merge it when ready.

2.1.4 Continuous integration

libNeuroML uses continuous integration (Wikipedia). Each commit to the master or development branches is tested,
along with all commits to pull requests. The latest status of the continuous integration tests can be seen here on GitHub
Actions.

2.1.5 Release process

libNeuroML is part of the official NeuroML release cycle. When a new libNeuroML release is ready the following
needs to happen:

• Update version number in setup.py

• update version number in doc/conf.py

• update release number in doc/conf.py (same as version number)

• update changelog in README.md

• merge development branch with master (This should happen via pull request - do not do the merge yourself even
if you are an owner of the repository.

602 Chapter 2. Contributing

https://en.wikipedia.org/wiki/Continuous_integration
https://github.com/NeuralEnsemble/libNeuroML/actions
https://github.com/NeuralEnsemble/libNeuroML/actions

libNeuroML Documentation

• push latest release to PyPi

More information on the NeuroML release process can be found on the NeuroML documentation page.

2.2 Regenerating documentation

Please create a virtual environment and use the requirements.txt file to install the necessary bits.

In most cases, running make html should be sufficient to regenerate the documentation. However, if any changes to
nml.py have been made, the nml-core-docs.py file in the helpers directory will also need to be run. This script manually
adds each class from nml.py to the documentation as a sub-section using the autoclass sphinx directive instead of the
automodule directive which does not allow us to do this.

2.3 Implementation of XML bindings for libNeuroML

The GenerateDS Python package is used to automatically generate the NeuroML XML-bindings in libNeuroML from
the NeuroML Schema. This technique can be utilized for any XML Schema and is outlined in this section. The addition
of helper methods and enforcement of correct naming conventions is also described. For more detail on how Python
bindings for XML are generated, the reader is directed to the GenerateDS and libNeuroML documentation. In the
following subsections it is assumed that all commands are executed in a top level directory nml and that GenerateDS is
installed. It should be noted that enforcement of naming conventions and addition of helper methods are not required
by GenerateDS and default values may be used.

2.3.1 Correct naming conventions

A module named generateds_config.py is placed in the nml directory. This module contains a Python dictionary called
NameTable which maps the original names specified in the XML Schema to user-specified ones. The NameTable
dictionary can be defined explicitly or generated programmatically, for example using regular expressions.

2.3.2 Addition of helper methods

Helper methods associated with a class can be added to a Python module as string objects. In the case of libNeuroML
the module is called helper_methods.py. The precise implementation details are esoteric and the user is referred to the
GenerateDS documentation for details of how this functionality is implemented.

2.3.3 Generation of bindings

Once generateds_config.py and a helper methods module are present in the nml directory a valid XML Schema is
required by GenerateDS. The following command generates the nml.py module which contains the XML-bindings:

$ generateDS.py -o nml.py --use-getter-setter=none --user-methods=helper_methods NeuroML_
→˓v2beta1.xsd

The -o flag sets the file which the module containing the bindings is to be written to. The –use-getter-setter=none
option disables getters and setters for class attributes. The –user-methods flag indicates the name of the helper methods
module (See section “Addition of helper methods”). The final parameter (NeuroML_v2beta1.xsd) is the name of the
XML Schema used for generating the bindings.

2.2. Regenerating documentation 603

https://docs.neuroml.org/Devdocs/ReleaseProcess.html

libNeuroML Documentation

2.4 Multicompartmental Python API Meeting

2.4.1 Organisation

Dates: 25 & 26 June 2012

Location: Room 336, Rockefeller building, UCL, London

Attendees: Sandra Berger, Andrew Davison, Padraig Gleeson, Mike Hull, Steve Marsh, Michele Mattioni, Eugenio
Piasini, Mike Vella

Sponsors: This meeting was generously supported by the INCF Multi Scale Modelling Program.

2.4.2 Minutes

Agreeing on terminology (segments, etc.) & scope

A discussion on the definitions of the key terms Node, Segment and Section is here, and was the basis for discussions
on these definitions at the meeting:

Nodes, Segments and Sections

Agreements

The Python libNeuroML API will use Node as a key building block for morphologies.

Segment is agreed on as the basis for defining morphologies in NeuroML and will be a top level object in libNeuroML,
where it will be the part of a neurite between two Nodes (proximal & distal).

Segment Group will be the basis for the grouping of these, and will be used to define dendrites, axons, etc.

Section is a term for the cable-like building block in NEURON, and will not be formally used in NeuroML or libNeu-
roML.

There was a discussion on whether it would be useful to be able to include this concept “by the back door” to enable
lossless import & export of morphologies from NEURON. Padraig’s proposal was to add an attribute (e.g. primary)
to the segmentGroup element to flag a core set of non overlapping segmentGroups, which are continuous (all children
are connected to distal point of parent) which would correspond to the old “cable” concept in NeuroML v1.x.

There was much discussion on the usefulness of this concept and whether it should be a different element/object in the
API from segmentGroup. The outcome was not fully resolved, but as a first test of this concept, Padraig will add the
new attribute to NeuroML, Mike V will add a flag (boolean?) to the API, and at a later point, when the API begins to
interact with native simulators, we can reevaluate the usefulness of the term.

Mike Vella’s current implementation

This is under development at: https://github.com/NeuralEnsemble/libNeuroML/tree/master/neuroml

Mike will continue on this (almost) full time for the next 2 months.

Following the meeting, he will perform a refactoring operation on the code base to better reflect the names used in
NeuroML, e.g.

neuroml_doc

cells

morphology # not entirely sure how this works- contains segment groups and is itself
a segment group?

604 Chapter 2. Contributing

http://www.incf.org/programs/modeling
https://github.com/NeuralEnsemble/libNeuroML/tree/master/neuroml

libNeuroML Documentation

segments

segment_groups

segment_groups

biophysical_properties

notes

morphologies

networks

point currents

ion channels

synapses

extracellular properties

It was also decided that certain SegmentGroup names should have reserved names in libNeuroML, the exact imple-
mentation of this is undecided:

Segment groups with reserved names:

soma_group
axon_group
apical_dendrite_group
basal_dendrite_group

It was also decided that a segment should only be able to connect to the root of a morphology, the syntax should be
something along the lines of:

segment can only connect to root of a morphology

connect syntax examples:

morph2.attach(2,cell2,0.5) (default frac along = None)

and:

morph[2].attach(cell2,0.5)

Mike V was asked to add a clone method to a morphology.

It was decided that fraction_along should be a property of segment.

The syntax for segment groups should be as follows: group=morph.segment_groups[‘axon_group’] (in connect merge
groups should be false by default - throw an exception, tell the user setting merge_groups = True or rename group will
fix this)

This was a subject of great debate and has not been completely settled.

2.4. Multicompartmental Python API Meeting 605

libNeuroML Documentation

Morphforge latest developments

Mike Hull gave a brief overview of the latest developments with Morphforge:

https://github.com/mikehulluk/morphforge

He pointed out that it’s still undergoing refactoring, but it can be used by other interested parties, and there is detailed
documentation online regarding installation, examples, etc.

Neuronvisio latest developments

Michele Mattioni gave a status update on Neuronvisio:

http://neuronvisio.org

The application has been closely linked to the NEURON simulator but hopefully use of libNeuroML will allow it to be
used independently of NEURON.

Michele showed Neuronvisio’s native HDF5 format as just one possible way to encode model structure + sim-
ulation results: https://github.com/NeuralEnsemble/libNeuroML/blob/master/hdf5Examples/Neuronvisio_medium_
cell_example_10ms.h5

Current Python & NeuroML support in MOOSE

A Skype call/Google Hangout was held on Tues at 9:30 to get an update from Bangalore.

The slides from this discussion are here:

https://github.com/NeuralEnsemble/libNeuroML/blob/master/doc/2012_06_26_neuroml_with_pymoose.pdf

As outlined there there are a number of areas in which MOOSE and Moogli import/export NeuroML version 1.x. A
number of issues and desired features missing in v1.x were highlighted, most of which are implemented or planned for
NeuroML v2.0.

There was general enthusiasm about the libNeuroML project, and it was felt that MOOSE should eventually transition
to using libNeuroML to import NeuroML models. This will happen in parallel with updating of the MOOSE PyNN
implementation.

The MOOSE developers were also keen to see how the new ComponentTypes in NeuroML 2 will map to inbuilt objects
in MOOSE (e.g. Integrate-and-Fire neurons, Markov channel, Izhikevich). They will add simple examples to the latest
MOOSE code to demonstrate their current implementation and discussion can continue on the mailing lists.

Saving to & loading from XML

There was not any detailed discussion on the various strategies for reading/saving XML in Python.

Padraig’s suggestion based on generateDS.py: https://github.com/NeuralEnsemble/libNeuroML/tree/master/ideas/
padraig/generatedFromV2Schema produces a very big file, which while usable as an API, e.g. see:

https://github.com/NeuralEnsemble/libNeuroML/blob/master/hhExample/hh_NEUROML2.py

could do with a lot of refactoring. It was felt that a version of this with a very efficient description of morphologies
(and network instances) based on the current work of Mike V is the way forward.

606 Chapter 2. Contributing

https://github.com/mikehulluk/morphforge
http://neuronvisio.org
https://github.com/NeuralEnsemble/libNeuroML/blob/master/hdf5Examples/Neuronvisio_medium_cell_example_10ms.h5
https://github.com/NeuralEnsemble/libNeuroML/blob/master/hdf5Examples/Neuronvisio_medium_cell_example_10ms.h5
https://github.com/NeuralEnsemble/libNeuroML/blob/master/doc/2012_06_26_neuroml_with_pymoose.pdf
http://www.rexx.com/~dkuhlman/generateDS.html
https://github.com/NeuralEnsemble/libNeuroML/tree/master/ideas/padraig/generatedFromV2Schema
https://github.com/NeuralEnsemble/libNeuroML/tree/master/ideas/padraig/generatedFromV2Schema
https://github.com/NeuralEnsemble/libNeuroML/blob/master/hhExample/hh_NEUROML2.py

libNeuroML Documentation

Storing simulation data as HDF5

The examples at: https://github.com/NeuralEnsemble/libNeuroML/tree/master/hdf5Examples have been updated.

The long term aim would be to arrive at a common format here that can be saved by simulators and that visualisation
packages like Moogli and Neuronvisio can read and display. This may be based on Neo: http://packages.python.org/
neo/, but that package’s current lack of ability to deal with data with nonuniform time points (e.g. produced by variable
time step simulations) may be a limiting factor.

General PyNN & NeuroML v2.0 interoperability

There was agreement that libNeuroML will form the basis of the multicompartmental neuron support in PyNN. The
extra functionality needed to interact with simulators is currently termed “Pyramidal”, but this will eventually be fully
merged into PyNN.

http://neuralensemble.org/trac/PyNN http://www.neuroml.org/NeuroML2CoreTypes/PyNN.html http://www.
neuroml.org/pynn.php

2.5 Nodes, Segments and Sections

An attempt to clarify these interrelated terms used in describing morphologies. Names in bold type are used for
elements of the NeuroML object model.

2.5.1 Nodes

A node is a 3D point with diameter information which forms the basis for 3D morphological reconstructions.

These nodes (or points) are the fundamental building blocks in the SWC and Neurolucida formats. This method of
description is based on the assumption that each node is physically connected to another node.

2.5.2 Segments

A segment (according to NeuroML v1&2) is a part of a neuronal tree between two 3D points with diameters (proximal
& distal). The term node isn’t used in NeuroML but the above description describes perfectly well the proximal &
distal points. Cell morphology elements consist of lists of segments (each with unique integer id, and optional name).

All segments, apart from the root segment, have a parent segment. If the proximal point of the segment is not specified,
the distal point of the parent segment is used for the proximal point of the child.

A special case is defined where proximal == distal, and the segment is assumed to be a sphere at that location with
the specified diameter.

Segments can be grouped into segmentGroups in NeuroML v2.0. These can be used to specify “apical_dendrites”,
“axon_group”, etc., which in turn can be used for placing channels on the cell.

An example of a NeuroML v2.0 cell is here.

libNeuroML will allow low level access to create and modify morphologies by handling nodes. Segments will also be
top level objects in the API. The XML serialisation will only specify segments with proximal & distal points, but the
HDF5 version may have an efficient serialisation of nodes & segments.

2.5. Nodes, Segments and Sections 607

https://github.com/NeuralEnsemble/libNeuroML/tree/master/hdf5Examples
http://packages.python.org/neo/
http://packages.python.org/neo/
http://neuralensemble.org/trac/PyNN
http://www.neuroml.org/NeuroML2CoreTypes/PyNN.html
http://www.neuroml.org/pynn.php
http://www.neuroml.org/pynn.php
http://sourceforge.net/apps/trac/neuroml/browser/NeuroML2/examples/NML2_SimpleMorphology.nml

libNeuroML Documentation

2.5.3 Sections

The concept of section is fundamentally important in NEURON. A section in this simulator is an unbranched cable
which can have multiple 3D points outlining the structure of a neurite in 3D. These points are used to determine the
surface area along the section. NEURON can vary the spatial discretisation of the neurite by varying the “nseg” value
of the section, e.g. a section with 20 3D points and nseg =4 will be split into 4 parts of equal length for simulating (as
isopotential compartments), with the surface area (and so total channel conductance) of each determined by the set of
3D points in that part.

There was a similar concept to this in NeuroML v1.x, the cable. Each segment had an attribute for the cable id, and
these were used for mapping to and from NEURON. Cables were unbranched, and so all segments after the first in the
cable only had distal points, see this example.

The cable concept was removed in NeuroML v2.0, as this is was seen as imposing concepts from compartmental
modelling on the basic morphological descriptions of cells. There is only a segmentGroup element for grouping
segments, though a segment can belong to multiple segmentGroups, which don’t need to be unbranched (unlike
cables). There may need to be a new attribute in segmentGroup (e.g. primary or unbranched or cable=”true”) which
defines a nonoverlapping set of unbranched segmentGroups, which can be used as the basis for sections in any parsing
application which is interested in them, or be ignored by any other application.

In libNeuroML, a section-like concept can be added at API level, to facilitate building cells, to facilitate import/export
to/from simulators supporting this concept, and to serve as a basis for recompartmentalisation of cells.

2.5.4 Issues

Dendrites in space

One major issue to address is that in many neuronal reconstructions, the soma is not included (or perhaps just an outline
of the soma is given), only the dendrites are. These dendrites’ 3D start points are on the edge of the soma membrane
“floating in space”. Normal procedure for a modeller in this case is to create a spherical soma at this central point and
electrically attach the dendrites to the centre of this.

In this case (and many others) the physical location of the start of the child segments do not correspond to the electrical
(or logical) connection point on the parent. This has advantages and disadvantages:

(+) It allows the real 3D points of the neuronal reconstruction to be retained (useful for visualisation)

(-) This is not unambiguously captured in the simplest morphological formats like SWC, which assume physical con-
nectivity between nodes/points

This scenario is supported in NeuroML v1&2, where a child segment has the option to redefine its start point (by adding
a proximal) with the child <-> parent relationship defining the electrical connection. This allows lossless import &
export from NEURON and removes the ambiguity of more compact formats like SWC and Neurolucida.

Connections mid segment

Another option for electrical connections (also influences by NEURON sections) is the ability for segments to (electri-
cally/logically) connect to a point inside a segment. This is specified by adding a fractionAlong attribute to the parent
element, i.e.

<parent segment="2" fractionAlong="0.5"/>

This is not possible in a node based format, but represents a logically consistent description of what the modeller wants.

608 Chapter 2. Contributing

http://www.neuroml.org/NeuroMLValidator/ViewNeuroMLFile.jsp?localFile=NeuroMLFiles/Examples/ChannelML/PyramidalCell.xml

libNeuroML Documentation

What to do?

Two options are available then for a serialisation format or API: should it try to support all of these scenarios, or try to
enforce “best practice”?

PG: I’d argue for the first approach, as it retains as much as possible of what the original reconstructor/simulator
specified. An API which enforces a policy when it encounters a non optimal morphology (e.g. moving all dendrites to
connection points, inserting new nodes) will alter the original data in perhaps unintended ways, and that information
will be lost by subsequent readers. It should be up to each parsing application to decide what to do with the extra
information when it reads in a file.

2.5. Nodes, Segments and Sections 609

libNeuroML Documentation

610 Chapter 2. Contributing

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

611

libNeuroML Documentation

612 Chapter 3. Indices and tables

BIBLIOGRAPHY

[VCC+14] Michael Vella, Robert C. Cannon, Sharon Crook, Andrew P. Davison, Gautham Ganapathy, Hugh P. C.
Robinson, R. Angus Silver, and Padraig Gleeson. Libneuroml and pylems: using python to combine proce-
dural and declarative modeling approaches in computational neuroscience. Frontiers in neuroinformatics,
8:38, 2014. doi:10.3389/fninf.2014.00038.

613

https://doi.org/10.3389/fninf.2014.00038

libNeuroML Documentation

614 Bibliography

PYTHON MODULE INDEX

n
neuroml.loaders, 582
neuroml.utils, 584
neuroml.writers, 583

615

libNeuroML Documentation

616 Python Module Index

INDEX

A
add() (neuroml.nml.generatedssupersuper.GeneratedsSuperSuper

method), 6
add() (neuroml.nml.nml.AdExIaFCell method), 9
add() (neuroml.nml.nml.AlphaCondSynapse method), 12
add() (neuroml.nml.nml.AlphaCurrentSynapse method),

18
add() (neuroml.nml.nml.AlphaCurrSynapse method), 15
add() (neuroml.nml.nml.AlphaSynapse method), 21
add() (neuroml.nml.nml.Annotation method), 24
add() (neuroml.nml.nml.Base method), 26
add() (neuroml.nml.nml.BaseCell method), 29
add() (neuroml.nml.nml.BaseCellMembPotCap

method), 32
add() (neuroml.nml.nml.BaseConductanceBasedSynapse

method), 35
add() (neuroml.nml.nml.BaseConductanceBasedSynapseTwo

method), 38
add() (neuroml.nml.nml.BaseConnection method), 41
add() (neuroml.nml.nml.BaseConnectionNewFormat

method), 44
add() (neuroml.nml.nml.BaseConnectionOldFormat

method), 46
add() (neuroml.nml.nml.BaseCurrentBasedSynapse

method), 49
add() (neuroml.nml.nml.BaseNonNegativeIntegerId

method), 52
add() (neuroml.nml.nml.BaseProjection method), 55
add() (neuroml.nml.nml.basePyNNCell method), 573
add() (neuroml.nml.nml.basePyNNIaFCell method), 576
add() (neuroml.nml.nml.basePyNNIaFCondCell

method), 579
add() (neuroml.nml.nml.BasePynnSynapse method), 58
add() (neuroml.nml.nml.BaseSynapse method), 61
add() (neuroml.nml.nml.BaseVoltageDepSynapse

method), 63
add() (neuroml.nml.nml.BaseWithoutId method), 66
add() (neuroml.nml.nml.BiophysicalProperties method),

69
add() (neuroml.nml.nml.BiophysicalProperties2CaPools

method), 72
add() (neuroml.nml.nml.BlockingPlasticSynapse

method), 78
add() (neuroml.nml.nml.BlockMechanism method), 75
add() (neuroml.nml.nml.Case method), 80
add() (neuroml.nml.nml.Cell method), 83
add() (neuroml.nml.nml.Cell2CaPools method), 94
add() (neuroml.nml.nml.CellSet method), 105
add() (neuroml.nml.nml.ChannelDensity method), 107
add() (neuroml.nml.nml.ChannelDensityGHK method),

110
add() (neuroml.nml.nml.ChannelDensityGHK2 method),

113
add() (neuroml.nml.nml.ChannelDensityNernst

method), 116
add() (neuroml.nml.nml.ChannelDensityNernstCa2

method), 119
add() (neuroml.nml.nml.ChannelDensityNonUniform

method), 122
add() (neuroml.nml.nml.ChannelDensityNonUniformGHK

method), 125
add() (neuroml.nml.nml.ChannelDensityNonUniformNernst

method), 128
add() (neuroml.nml.nml.ChannelDensityVShift method),

131
add() (neuroml.nml.nml.ChannelPopulation method),

134
add() (neuroml.nml.nml.ClosedState method), 137
add() (neuroml.nml.nml.ComponentType method), 139
add() (neuroml.nml.nml.CompoundInput method), 142
add() (neuroml.nml.nml.CompoundInputDL method),

145
add() (neuroml.nml.nml.ConcentrationModel_D

method), 148
add() (neuroml.nml.nml.ConditionalDerivedVariable

method), 151
add() (neuroml.nml.nml.Connection method), 154
add() (neuroml.nml.nml.ConnectionWD method), 158
add() (neuroml.nml.nml.Constant method), 161
add() (neuroml.nml.nml.ContinuousConnection

method), 164
add() (neuroml.nml.nml.ContinuousConnectionInstance

method), 168
add() (neuroml.nml.nml.ContinuousConnectionInstanceW

617

libNeuroML Documentation

method), 172
add() (neuroml.nml.nml.ContinuousProjection method),

175
add() (neuroml.nml.nml.DecayingPoolConcentrationModel

method), 178
add() (neuroml.nml.nml.DerivedVariable method), 181
add() (neuroml.nml.nml.DistalDetails method), 184
add() (neuroml.nml.nml.DoubleSynapse method), 187
add() (neuroml.nml.nml.Dynamics method), 189
add() (neuroml.nml.nml.EIF_cond_alpha_isfa_ista

method), 193
add() (neuroml.nml.nml.EIF_cond_exp_isfa_ista

method), 197
add() (neuroml.nml.nml.ElectricalConnection method),

199
add() (neuroml.nml.nml.ElectricalConnectionInstance

method), 203
add() (neuroml.nml.nml.ElectricalConnectionInstanceW

method), 207
add() (neuroml.nml.nml.ElectricalProjection method),

211
add() (neuroml.nml.nml.ExpCondSynapse method), 214
add() (neuroml.nml.nml.ExpCurrSynapse method), 217
add() (neuroml.nml.nml.ExplicitInput method), 229
add() (neuroml.nml.nml.ExpOneSynapse method), 220
add() (neuroml.nml.nml.Exposure method), 232
add() (neuroml.nml.nml.ExpThreeSynapse method), 223
add() (neuroml.nml.nml.ExpTwoSynapse method), 226
add() (neuroml.nml.nml.ExtracellularProperties

method), 234
add() (neuroml.nml.nml.ExtracellularPropertiesLocal

method), 237
add() (neuroml.nml.nml.FitzHughNagumo1969Cell

method), 240
add() (neuroml.nml.nml.FitzHughNagumoCell method),

243
add() (neuroml.nml.nml.FixedFactorConcentrationModel

method), 246
add() (neuroml.nml.nml.ForwardTransition method),

249
add() (neuroml.nml.nml.GapJunction method), 252
add() (neuroml.nml.nml.GateFractional method), 255
add() (neuroml.nml.nml.GateFractionalSubgate

method), 257
add() (neuroml.nml.nml.GateHHInstantaneous method),

260
add() (neuroml.nml.nml.GateHHRates method), 263
add() (neuroml.nml.nml.GateHHRatesInf method), 266
add() (neuroml.nml.nml.GateHHRatesTau method), 269
add() (neuroml.nml.nml.GateHHRatesTauInf method),

272
add() (neuroml.nml.nml.GateHHTauInf method), 274
add() (neuroml.nml.nml.GateHHUndetermined method),

277

add() (neuroml.nml.nml.GateKS method), 280
add() (neuroml.nml.nml.GradedSynapse method), 283
add() (neuroml.nml.nml.GridLayout method), 286
add() (neuroml.nml.nml.HH_cond_exp method), 297
add() (neuroml.nml.nml.HHRate method), 289
add() (neuroml.nml.nml.HHTime method), 291
add() (neuroml.nml.nml.HHVariable method), 294
add() (neuroml.nml.nml.IafCell method), 314
add() (neuroml.nml.nml.IafRefCell method), 317
add() (neuroml.nml.nml.IafTauCell method), 320
add() (neuroml.nml.nml.IafTauRefCell method), 323
add() (neuroml.nml.nml.IF_cond_alpha method), 301
add() (neuroml.nml.nml.IF_cond_exp method), 304
add() (neuroml.nml.nml.IF_curr_alpha method), 307
add() (neuroml.nml.nml.IF_curr_exp method), 311
add() (neuroml.nml.nml.Include method), 326
add() (neuroml.nml.nml.IncludeType method), 328
add() (neuroml.nml.nml.InhomogeneousParameter

method), 331
add() (neuroml.nml.nml.InhomogeneousValue method),

334
add() (neuroml.nml.nml.InitMembPotential method),

337
add() (neuroml.nml.nml.Input method), 339
add() (neuroml.nml.nml.InputList method), 342
add() (neuroml.nml.nml.InputW method), 345
add() (neuroml.nml.nml.Instance method), 348
add() (neuroml.nml.nml.InstanceRequirement method),

351
add() (neuroml.nml.nml.IntracellularProperties

method), 354
add() (neuroml.nml.nml.IntracellularProperties2CaPools

method), 357
add() (neuroml.nml.nml.IonChannel method), 360
add() (neuroml.nml.nml.IonChannelHH method), 363
add() (neuroml.nml.nml.IonChannelKS method), 366
add() (neuroml.nml.nml.IonChannelScalable method),

369
add() (neuroml.nml.nml.IonChannelVShift method), 372
add() (neuroml.nml.nml.Izhikevich2007Cell method),

375
add() (neuroml.nml.nml.IzhikevichCell method), 378
add() (neuroml.nml.nml.Layout method), 384
add() (neuroml.nml.nml.LEMS_Property method), 381
add() (neuroml.nml.nml.LinearGradedSynapse method),

387
add() (neuroml.nml.nml.Location method), 389
add() (neuroml.nml.nml.Member method), 392
add() (neuroml.nml.nml.MembraneProperties method),

395
add() (neuroml.nml.nml.MembraneProperties2CaPools

method), 398
add() (neuroml.nml.nml.Morphology method), 401

618 Index

libNeuroML Documentation

add() (neuroml.nml.nml.NamedDimensionalType
method), 404

add() (neuroml.nml.nml.NamedDimensionalVariable
method), 406

add() (neuroml.nml.nml.Network method), 409
add() (neuroml.nml.nml.NeuroMLDocument method),

414
add() (neuroml.nml.nml.OpenState method), 417
add() (neuroml.nml.nml.Parameter method), 419
add() (neuroml.nml.nml.Path method), 422
add() (neuroml.nml.nml.PinskyRinzelCA3Cell method),

426
add() (neuroml.nml.nml.PlasticityMechanism method),

429
add() (neuroml.nml.nml.Point3DWithDiam method), 432
add() (neuroml.nml.nml.PoissonFiringSynapse method),

435
add() (neuroml.nml.nml.Population method), 438
add() (neuroml.nml.nml.Projection method), 441
add() (neuroml.nml.nml.Property method), 444
add() (neuroml.nml.nml.ProximalDetails method), 446
add() (neuroml.nml.nml.PulseGenerator method), 449
add() (neuroml.nml.nml.PulseGeneratorDL method),

452
add() (neuroml.nml.nml.Q10ConductanceScaling

method), 455
add() (neuroml.nml.nml.Q10Settings method), 458
add() (neuroml.nml.nml.RampGenerator method), 461
add() (neuroml.nml.nml.RampGeneratorDL method),

464
add() (neuroml.nml.nml.RandomLayout method), 467
add() (neuroml.nml.nml.ReactionScheme method), 470
add() (neuroml.nml.nml.Region method), 472
add() (neuroml.nml.nml.Requirement method), 475
add() (neuroml.nml.nml.Resistivity method), 478
add() (neuroml.nml.nml.ReverseTransition method), 481
add() (neuroml.nml.nml.Segment method), 484
add() (neuroml.nml.nml.SegmentEndPoint method), 487
add() (neuroml.nml.nml.SegmentGroup method), 490
add() (neuroml.nml.nml.SegmentParent method), 493
add() (neuroml.nml.nml.SilentSynapse method), 495
add() (neuroml.nml.nml.SineGenerator method), 498
add() (neuroml.nml.nml.SineGeneratorDL method), 502
add() (neuroml.nml.nml.Space method), 504
add() (neuroml.nml.nml.SpaceStructure method), 507
add() (neuroml.nml.nml.Species method), 510
add() (neuroml.nml.nml.SpecificCapacitance method),

513
add() (neuroml.nml.nml.Spike method), 515
add() (neuroml.nml.nml.SpikeArray method), 518
add() (neuroml.nml.nml.SpikeGenerator method), 521
add() (neuroml.nml.nml.SpikeGeneratorPoisson

method), 524

add() (neuroml.nml.nml.SpikeGeneratorRandom
method), 527

add() (neuroml.nml.nml.SpikeGeneratorRefPoisson
method), 530

add() (neuroml.nml.nml.SpikeSourcePoisson method),
533

add() (neuroml.nml.nml.SpikeThresh method), 536
add() (neuroml.nml.nml.Standalone method), 538
add() (neuroml.nml.nml.StateVariable method), 541
add() (neuroml.nml.nml.SubTree method), 544
add() (neuroml.nml.nml.SynapticConnection method),

547
add() (neuroml.nml.nml.TauInfTransition method), 549
add() (neuroml.nml.nml.TimeDerivative method), 552
add() (neuroml.nml.nml.TimedSynapticInput method),

555
add() (neuroml.nml.nml.TransientPoissonFiringSynapse

method), 558
add() (neuroml.nml.nml.UnstructuredLayout method),

561
add() (neuroml.nml.nml.VariableParameter method),

564
add() (neuroml.nml.nml.VoltageClamp method), 567
add() (neuroml.nml.nml.VoltageClampTriple method),

570
add_all_to_document() (in module neuroml.utils),

584
add_channel_density() (neuroml.nml.nml.Cell

method), 84
add_channel_density() (neu-

roml.nml.nml.Cell2CaPools method), 95
add_channel_density_v() (neuroml.nml.nml.Cell

method), 84
add_channel_density_v() (neu-

roml.nml.nml.Cell2CaPools method), 95
add_intracellular_property() (neu-

roml.nml.nml.Cell method), 84
add_intracellular_property() (neu-

roml.nml.nml.Cell2CaPools method), 95
add_membrane_property() (neuroml.nml.nml.Cell

method), 85
add_membrane_property() (neu-

roml.nml.nml.Cell2CaPools method), 95
add_message() (neuroml.nml.generatedscollector.GdsCollector

method), 8
add_segment() (neuroml.nml.nml.Cell method), 85
add_segment() (neuroml.nml.nml.Cell2CaPools

method), 96
add_segment_group() (neuroml.nml.nml.Cell method),

86
add_segment_group() (neu-

roml.nml.nml.Cell2CaPools method), 97
add_unbranched_segment_group() (neu-

roml.nml.nml.Cell method), 86

Index 619

libNeuroML Documentation

add_unbranched_segment_group() (neu-
roml.nml.nml.Cell2CaPools method), 97

add_unbranched_segments() (neuroml.nml.nml.Cell
method), 87

add_unbranched_segments() (neu-
roml.nml.nml.Cell2CaPools method), 97

AdExIaFCell (class in neuroml.nml.nml), 9
AlphaCondSynapse (class in neuroml.nml.nml), 12
AlphaCurrentSynapse (class in neuroml.nml.nml), 18
AlphaCurrSynapse (class in neuroml.nml.nml), 15
AlphaSynapse (class in neuroml.nml.nml), 21
Annotation (class in neuroml.nml.nml), 24
append() (neuroml.nml.nml.NeuroMLDocument

method), 414
append_to_element() (in module neuroml.utils), 584
ArrayMorphLoader (class in neuroml.loaders), 582
ArrayMorphWriter (class in neuroml.writers), 583

B
Base (class in neuroml.nml.nml), 26
BaseCell (class in neuroml.nml.nml), 29
BaseCellMembPotCap (class in neuroml.nml.nml), 32
BaseConductanceBasedSynapse (class in neu-

roml.nml.nml), 35
BaseConductanceBasedSynapseTwo (class in neu-

roml.nml.nml), 38
BaseConnection (class in neuroml.nml.nml), 41
BaseConnectionNewFormat (class in neu-

roml.nml.nml), 43
BaseConnectionOldFormat (class in neu-

roml.nml.nml), 46
BaseCurrentBasedSynapse (class in neu-

roml.nml.nml), 49
BaseNonNegativeIntegerId (class in neu-

roml.nml.nml), 52
BaseProjection (class in neuroml.nml.nml), 55
basePyNNCell (class in neuroml.nml.nml), 572
basePyNNIaFCell (class in neuroml.nml.nml), 576
basePyNNIaFCondCell (class in neuroml.nml.nml), 579
BasePynnSynapse (class in neuroml.nml.nml), 58
BaseSynapse (class in neuroml.nml.nml), 61
BaseVoltageDepSynapse (class in neuroml.nml.nml),

63
BaseWithoutId (class in neuroml.nml.nml), 66
BiophysicalProperties (class in neuroml.nml.nml),

69
BiophysicalProperties2CaPools (class in neu-

roml.nml.nml), 72
BlockingPlasticSynapse (class in neuroml.nml.nml),

77
BlockMechanism (class in neuroml.nml.nml), 75

C
Case (class in neuroml.nml.nml), 80

Cell (class in neuroml.nml.nml), 83
Cell2CaPools (class in neuroml.nml.nml), 94
CellSet (class in neuroml.nml.nml), 105
ChannelDensity (class in neuroml.nml.nml), 107
ChannelDensityGHK (class in neuroml.nml.nml), 110
ChannelDensityGHK2 (class in neuroml.nml.nml), 113
ChannelDensityNernst (class in neuroml.nml.nml),

116
ChannelDensityNernstCa2 (class in neu-

roml.nml.nml), 119
ChannelDensityNonUniform (class in neu-

roml.nml.nml), 122
ChannelDensityNonUniformGHK (class in neu-

roml.nml.nml), 125
ChannelDensityNonUniformNernst (class in neu-

roml.nml.nml), 128
ChannelDensityVShift (class in neuroml.nml.nml),

131
ChannelPopulation (class in neuroml.nml.nml), 134
clear_messages() (neu-

roml.nml.generatedscollector.GdsCollector
method), 8

ClosedState (class in neuroml.nml.nml), 137
component_factory() (in module neuroml.utils), 584
component_factory() (neu-

roml.nml.generatedssupersuper.GeneratedsSuperSuper
class method), 6

component_factory() (neuroml.nml.nml.AdExIaFCell
class method), 10

component_factory() (neu-
roml.nml.nml.AlphaCondSynapse class
method), 13

component_factory() (neu-
roml.nml.nml.AlphaCurrentSynapse class
method), 18

component_factory() (neu-
roml.nml.nml.AlphaCurrSynapse class
method), 15

component_factory() (neu-
roml.nml.nml.AlphaSynapse class method),
21

component_factory() (neuroml.nml.nml.Annotation
class method), 24

component_factory() (neuroml.nml.nml.Base class
method), 27

component_factory() (neuroml.nml.nml.BaseCell
class method), 30

component_factory() (neu-
roml.nml.nml.BaseCellMembPotCap class
method), 32

component_factory() (neu-
roml.nml.nml.BaseConductanceBasedSynapse
class method), 35

component_factory() (neu-

620 Index

libNeuroML Documentation

roml.nml.nml.BaseConductanceBasedSynapseTwo
class method), 38

component_factory() (neu-
roml.nml.nml.BaseConnection class method),
41

component_factory() (neu-
roml.nml.nml.BaseConnectionNewFormat
class method), 44

component_factory() (neu-
roml.nml.nml.BaseConnectionOldFormat
class method), 47

component_factory() (neu-
roml.nml.nml.BaseCurrentBasedSynapse
class method), 50

component_factory() (neu-
roml.nml.nml.BaseNonNegativeIntegerId
class method), 52

component_factory() (neu-
roml.nml.nml.BaseProjection class method),
55

component_factory() (neu-
roml.nml.nml.basePyNNCell class method),
573

component_factory() (neu-
roml.nml.nml.basePyNNIaFCell class method),
577

component_factory() (neu-
roml.nml.nml.basePyNNIaFCondCell class
method), 580

component_factory() (neu-
roml.nml.nml.BasePynnSynapse class method),
58

component_factory() (neuroml.nml.nml.BaseSynapse
class method), 61

component_factory() (neu-
roml.nml.nml.BaseVoltageDepSynapse class
method), 64

component_factory() (neu-
roml.nml.nml.BaseWithoutId class method),
67

component_factory() (neu-
roml.nml.nml.BiophysicalProperties class
method), 70

component_factory() (neu-
roml.nml.nml.BiophysicalProperties2CaPools
class method), 72

component_factory() (neu-
roml.nml.nml.BlockingPlasticSynapse class
method), 78

component_factory() (neu-
roml.nml.nml.BlockMechanism class method),
75

component_factory() (neuroml.nml.nml.Case class
method), 81

component_factory() (neuroml.nml.nml.Cell class
method), 87

component_factory() (neu-
roml.nml.nml.Cell2CaPools class method),
98

component_factory() (neuroml.nml.nml.CellSet class
method), 105

component_factory() (neu-
roml.nml.nml.ChannelDensity class method),
108

component_factory() (neu-
roml.nml.nml.ChannelDensityGHK class
method), 111

component_factory() (neu-
roml.nml.nml.ChannelDensityGHK2 class
method), 114

component_factory() (neu-
roml.nml.nml.ChannelDensityNernst class
method), 117

component_factory() (neu-
roml.nml.nml.ChannelDensityNernstCa2
class method), 120

component_factory() (neu-
roml.nml.nml.ChannelDensityNonUniform
class method), 122

component_factory() (neu-
roml.nml.nml.ChannelDensityNonUniformGHK
class method), 125

component_factory() (neu-
roml.nml.nml.ChannelDensityNonUniformNernst
class method), 128

component_factory() (neu-
roml.nml.nml.ChannelDensityVShift class
method), 131

component_factory() (neu-
roml.nml.nml.ChannelPopulation class
method), 134

component_factory() (neuroml.nml.nml.ClosedState
class method), 137

component_factory() (neu-
roml.nml.nml.ComponentType class method),
140

component_factory() (neu-
roml.nml.nml.CompoundInput class method),
143

component_factory() (neu-
roml.nml.nml.CompoundInputDL class
method), 146

component_factory() (neu-
roml.nml.nml.ConcentrationModel_D class
method), 148

component_factory() (neu-
roml.nml.nml.ConditionalDerivedVariable
class method), 151

Index 621

libNeuroML Documentation

component_factory() (neuroml.nml.nml.Connection
class method), 154

component_factory() (neu-
roml.nml.nml.ConnectionWD class method),
158

component_factory() (neuroml.nml.nml.Constant
class method), 162

component_factory() (neu-
roml.nml.nml.ContinuousConnection class
method), 164

component_factory() (neu-
roml.nml.nml.ContinuousConnectionInstance
class method), 168

component_factory() (neu-
roml.nml.nml.ContinuousConnectionInstanceW
class method), 172

component_factory() (neu-
roml.nml.nml.ContinuousProjection class
method), 176

component_factory() (neu-
roml.nml.nml.DecayingPoolConcentrationModel
class method), 179

component_factory() (neu-
roml.nml.nml.DerivedVariable class method),
182

component_factory() (neuroml.nml.nml.DistalDetails
class method), 184

component_factory() (neu-
roml.nml.nml.DoubleSynapse class method),
187

component_factory() (neuroml.nml.nml.Dynamics
class method), 190

component_factory() (neu-
roml.nml.nml.EIF_cond_alpha_isfa_ista
class method), 194

component_factory() (neu-
roml.nml.nml.EIF_cond_exp_isfa_ista class
method), 197

component_factory() (neu-
roml.nml.nml.ElectricalConnection class
method), 200

component_factory() (neu-
roml.nml.nml.ElectricalConnectionInstance
class method), 204

component_factory() (neu-
roml.nml.nml.ElectricalConnectionInstanceW
class method), 207

component_factory() (neu-
roml.nml.nml.ElectricalProjection class
method), 211

component_factory() (neu-
roml.nml.nml.ExpCondSynapse class method),
214

component_factory() (neu-

roml.nml.nml.ExpCurrSynapse class method),
217

component_factory() (neuroml.nml.nml.ExplicitInput
class method), 229

component_factory() (neu-
roml.nml.nml.ExpOneSynapse class method),
220

component_factory() (neuroml.nml.nml.Exposure
class method), 232

component_factory() (neu-
roml.nml.nml.ExpThreeSynapse class method),
223

component_factory() (neu-
roml.nml.nml.ExpTwoSynapse class method),
227

component_factory() (neu-
roml.nml.nml.ExtracellularProperties class
method), 235

component_factory() (neu-
roml.nml.nml.ExtracellularPropertiesLocal
class method), 238

component_factory() (neu-
roml.nml.nml.FitzHughNagumo1969Cell
class method), 241

component_factory() (neu-
roml.nml.nml.FitzHughNagumoCell class
method), 244

component_factory() (neu-
roml.nml.nml.FixedFactorConcentrationModel
class method), 247

component_factory() (neu-
roml.nml.nml.ForwardTransition class
method), 250

component_factory() (neuroml.nml.nml.GapJunction
class method), 252

component_factory() (neu-
roml.nml.nml.GateFractional class method),
255

component_factory() (neu-
roml.nml.nml.GateFractionalSubgate class
method), 258

component_factory() (neu-
roml.nml.nml.GateHHInstantaneous class
method), 261

component_factory() (neu-
roml.nml.nml.GateHHRates class method),
264

component_factory() (neu-
roml.nml.nml.GateHHRatesInf class method),
266

component_factory() (neu-
roml.nml.nml.GateHHRatesTau class method),
269

component_factory() (neu-

622 Index

libNeuroML Documentation

roml.nml.nml.GateHHRatesTauInf class
method), 272

component_factory() (neu-
roml.nml.nml.GateHHTauInf class method),
275

component_factory() (neu-
roml.nml.nml.GateHHUndetermined class
method), 278

component_factory() (neuroml.nml.nml.GateKS class
method), 281

component_factory() (neu-
roml.nml.nml.GradedSynapse class method),
284

component_factory() (neuroml.nml.nml.GridLayout
class method), 286

component_factory() (neu-
roml.nml.nml.HH_cond_exp class method),
298

component_factory() (neuroml.nml.nml.HHRate class
method), 289

component_factory() (neuroml.nml.nml.HHTime
class method), 292

component_factory() (neuroml.nml.nml.HHVariable
class method), 294

component_factory() (neuroml.nml.nml.IafCell class
method), 314

component_factory() (neuroml.nml.nml.IafRefCell
class method), 317

component_factory() (neuroml.nml.nml.IafTauCell
class method), 320

component_factory() (neu-
roml.nml.nml.IafTauRefCell class method),
324

component_factory() (neu-
roml.nml.nml.IF_cond_alpha class method),
301

component_factory() (neuroml.nml.nml.IF_cond_exp
class method), 305

component_factory() (neu-
roml.nml.nml.IF_curr_alpha class method),
308

component_factory() (neuroml.nml.nml.IF_curr_exp
class method), 311

component_factory() (neuroml.nml.nml.Include class
method), 326

component_factory() (neuroml.nml.nml.IncludeType
class method), 329

component_factory() (neu-
roml.nml.nml.InhomogeneousParameter class
method), 332

component_factory() (neu-
roml.nml.nml.InhomogeneousValue class
method), 334

component_factory() (neu-

roml.nml.nml.InitMembPotential class method),
337

component_factory() (neuroml.nml.nml.Input class
method), 340

component_factory() (neuroml.nml.nml.InputList
class method), 343

component_factory() (neuroml.nml.nml.InputW class
method), 346

component_factory() (neuroml.nml.nml.Instance
class method), 349

component_factory() (neu-
roml.nml.nml.InstanceRequirement class
method), 352

component_factory() (neu-
roml.nml.nml.IntracellularProperties class
method), 354

component_factory() (neu-
roml.nml.nml.IntracellularProperties2CaPools
class method), 357

component_factory() (neuroml.nml.nml.IonChannel
class method), 360

component_factory() (neu-
roml.nml.nml.IonChannelHH class method),
364

component_factory() (neu-
roml.nml.nml.IonChannelKS class method),
366

component_factory() (neu-
roml.nml.nml.IonChannelScalable class
method), 369

component_factory() (neu-
roml.nml.nml.IonChannelVShift class method),
373

component_factory() (neu-
roml.nml.nml.Izhikevich2007Cell class
method), 376

component_factory() (neu-
roml.nml.nml.IzhikevichCell class method),
379

component_factory() (neuroml.nml.nml.Layout class
method), 384

component_factory() (neu-
roml.nml.nml.LEMS_Property class method),
381

component_factory() (neu-
roml.nml.nml.LinearGradedSynapse class
method), 387

component_factory() (neuroml.nml.nml.Location
class method), 390

component_factory() (neuroml.nml.nml.Member
class method), 393

component_factory() (neu-
roml.nml.nml.MembraneProperties class
method), 396

Index 623

libNeuroML Documentation

component_factory() (neu-
roml.nml.nml.MembraneProperties2CaPools
class method), 399

component_factory() (neuroml.nml.nml.Morphology
class method), 401

component_factory() (neu-
roml.nml.nml.NamedDimensionalType class
method), 404

component_factory() (neu-
roml.nml.nml.NamedDimensionalVariable
class method), 407

component_factory() (neuroml.nml.nml.Network
class method), 410

component_factory() (neu-
roml.nml.nml.NeuroMLDocument class
method), 414

component_factory() (neuroml.nml.nml.OpenState
class method), 417

component_factory() (neuroml.nml.nml.Parameter
class method), 420

component_factory() (neuroml.nml.nml.Path class
method), 423

component_factory() (neu-
roml.nml.nml.PinskyRinzelCA3Cell class
method), 426

component_factory() (neu-
roml.nml.nml.PlasticityMechanism class
method), 429

component_factory() (neu-
roml.nml.nml.Point3DWithDiam class method),
432

component_factory() (neu-
roml.nml.nml.PoissonFiringSynapse class
method), 435

component_factory() (neuroml.nml.nml.Population
class method), 438

component_factory() (neuroml.nml.nml.Projection
class method), 441

component_factory() (neuroml.nml.nml.Property
class method), 444

component_factory() (neu-
roml.nml.nml.ProximalDetails class method),
447

component_factory() (neu-
roml.nml.nml.PulseGenerator class method),
450

component_factory() (neu-
roml.nml.nml.PulseGeneratorDL class
method), 453

component_factory() (neu-
roml.nml.nml.Q10ConductanceScaling class
method), 456

component_factory() (neuroml.nml.nml.Q10Settings
class method), 458

component_factory() (neu-
roml.nml.nml.RampGenerator class method),
462

component_factory() (neu-
roml.nml.nml.RampGeneratorDL class
method), 465

component_factory() (neu-
roml.nml.nml.RandomLayout class method),
467

component_factory() (neu-
roml.nml.nml.ReactionScheme class method),
470

component_factory() (neuroml.nml.nml.Region class
method), 473

component_factory() (neuroml.nml.nml.Requirement
class method), 475

component_factory() (neuroml.nml.nml.Resistivity
class method), 478

component_factory() (neu-
roml.nml.nml.ReverseTransition class method),
481

component_factory() (neuroml.nml.nml.Segment
class method), 484

component_factory() (neu-
roml.nml.nml.SegmentEndPoint class method),
487

component_factory() (neu-
roml.nml.nml.SegmentGroup class method),
490

component_factory() (neu-
roml.nml.nml.SegmentParent class method),
493

component_factory() (neu-
roml.nml.nml.SilentSynapse class method),
496

component_factory() (neu-
roml.nml.nml.SineGenerator class method),
499

component_factory() (neu-
roml.nml.nml.SineGeneratorDL class method),
502

component_factory() (neuroml.nml.nml.Space class
method), 505

component_factory() (neu-
roml.nml.nml.SpaceStructure class method),
507

component_factory() (neuroml.nml.nml.Species class
method), 510

component_factory() (neu-
roml.nml.nml.SpecificCapacitance class
method), 513

component_factory() (neuroml.nml.nml.Spike class
method), 516

component_factory() (neuroml.nml.nml.SpikeArray

624 Index

libNeuroML Documentation

class method), 519
component_factory() (neu-

roml.nml.nml.SpikeGenerator class method),
522

component_factory() (neu-
roml.nml.nml.SpikeGeneratorPoisson class
method), 524

component_factory() (neu-
roml.nml.nml.SpikeGeneratorRandom class
method), 527

component_factory() (neu-
roml.nml.nml.SpikeGeneratorRefPoisson
class method), 530

component_factory() (neu-
roml.nml.nml.SpikeSourcePoisson class
method), 533

component_factory() (neuroml.nml.nml.SpikeThresh
class method), 536

component_factory() (neuroml.nml.nml.Standalone
class method), 539

component_factory() (neuroml.nml.nml.StateVariable
class method), 542

component_factory() (neuroml.nml.nml.SubTree class
method), 544

component_factory() (neu-
roml.nml.nml.SynapticConnection class
method), 547

component_factory() (neu-
roml.nml.nml.TauInfTransition class method),
550

component_factory() (neu-
roml.nml.nml.TimeDerivative class method),
553

component_factory() (neu-
roml.nml.nml.TimedSynapticInput class
method), 555

component_factory() (neu-
roml.nml.nml.TransientPoissonFiringSynapse
class method), 558

component_factory() (neu-
roml.nml.nml.UnstructuredLayout class
method), 561

component_factory() (neu-
roml.nml.nml.VariableParameter class
method), 564

component_factory() (neu-
roml.nml.nml.VoltageClamp class method),
567

component_factory() (neu-
roml.nml.nml.VoltageClampTriple class
method), 570

ComponentType (class in neuroml.nml.nml), 139
CompoundInput (class in neuroml.nml.nml), 142
CompoundInputDL (class in neuroml.nml.nml), 145

ConcentrationModel_D (class in neuroml.nml.nml),
148

ConditionalDerivedVariable (class in neu-
roml.nml.nml), 151

Connection (class in neuroml.nml.nml), 154
ConnectionWD (class in neuroml.nml.nml), 157
Constant (class in neuroml.nml.nml), 161
ContinuousConnection (class in neuroml.nml.nml),

164
ContinuousConnectionInstance (class in neu-

roml.nml.nml), 168
ContinuousConnectionInstanceW (class in neu-

roml.nml.nml), 171
ContinuousProjection (class in neuroml.nml.nml),

175
create_unbranched_segment_group_branches()

(neuroml.nml.nml.Cell method), 88
create_unbranched_segment_group_branches()

(neuroml.nml.nml.Cell2CaPools method), 99
ctinfo() (in module neuroml.utils), 584
ctparentinfo() (in module neuroml.utils), 584

D
DecayingPoolConcentrationModel (class in neu-

roml.nml.nml), 178
DerivedVariable (class in neuroml.nml.nml), 181
DistalDetails (class in neuroml.nml.nml), 184
distance_to() (neuroml.nml.nml.Point3DWithDiam

method), 433
DoubleSynapse (class in neuroml.nml.nml), 187
Dynamics (class in neuroml.nml.nml), 189

E
EIF_cond_alpha_isfa_ista (class in neu-

roml.nml.nml), 192
EIF_cond_exp_isfa_ista (class in neuroml.nml.nml),

196
ElectricalConnection (class in neuroml.nml.nml),

199
ElectricalConnectionInstance (class in neu-

roml.nml.nml), 203
ElectricalConnectionInstanceW (class in neu-

roml.nml.nml), 207
ElectricalProjection (class in neuroml.nml.nml),

211
ExpCondSynapse (class in neuroml.nml.nml), 214
ExpCurrSynapse (class in neuroml.nml.nml), 217
ExplicitInput (class in neuroml.nml.nml), 229
ExpOneSynapse (class in neuroml.nml.nml), 219
exportHdf5() (neuroml.nml.nml.ContinuousProjection

method), 176
exportHdf5() (neuroml.nml.nml.ElectricalProjection

method), 212
exportHdf5() (neuroml.nml.nml.InputList method), 344

Index 625

libNeuroML Documentation

exportHdf5() (neuroml.nml.nml.Network method), 411
exportHdf5() (neuroml.nml.nml.Population method),

439
exportHdf5() (neuroml.nml.nml.Projection method),

442
Exposure (class in neuroml.nml.nml), 232
ExpThreeSynapse (class in neuroml.nml.nml), 222
ExpTwoSynapse (class in neuroml.nml.nml), 226
ExtracellularProperties (class in neu-

roml.nml.nml), 234
ExtracellularPropertiesLocal (class in neu-

roml.nml.nml), 237

F
FitzHughNagumo1969Cell (class in neuroml.nml.nml),

240
FitzHughNagumoCell (class in neuroml.nml.nml), 243
FixedFactorConcentrationModel (class in neu-

roml.nml.nml), 246
ForwardTransition (class in neuroml.nml.nml), 249

G
GapJunction (class in neuroml.nml.nml), 252
GateFractional (class in neuroml.nml.nml), 255
GateFractionalSubgate (class in neuroml.nml.nml),

257
GateHHInstantaneous (class in neuroml.nml.nml), 260
GateHHRates (class in neuroml.nml.nml), 263
GateHHRatesInf (class in neuroml.nml.nml), 266
GateHHRatesTau (class in neuroml.nml.nml), 269
GateHHRatesTauInf (class in neuroml.nml.nml), 271
GateHHTauInf (class in neuroml.nml.nml), 274
GateHHUndetermined (class in neuroml.nml.nml), 277
GateKS (class in neuroml.nml.nml), 280
GdsCollector (class in neu-

roml.nml.generatedscollector), 8
GeneratedsSuper (class in neuroml.nml.nml), 283
GeneratedsSuperSuper (class in neu-

roml.nml.generatedssupersuper), 6
get_actual_proximal() (neuroml.nml.nml.Cell

method), 88
get_actual_proximal() (neu-

roml.nml.nml.Cell2CaPools method), 99
get_all_segments_in_group() (neu-

roml.nml.nml.Cell method), 88
get_all_segments_in_group() (neu-

roml.nml.nml.Cell2CaPools method), 99
get_by_id() (neuroml.nml.nml.Network method), 411
get_by_id() (neuroml.nml.nml.NeuroMLDocument

method), 415
get_delay_in_ms() (neuroml.nml.nml.ConnectionWD

method), 159
get_fraction_along() (neu-

roml.nml.nml.ExplicitInput method), 230

get_fraction_along() (neuroml.nml.nml.Input
method), 341

get_fraction_along() (neuroml.nml.nml.InputW
method), 346

get_messages() (neu-
roml.nml.generatedscollector.GdsCollector
method), 8

get_ordered_segments_in_groups() (neu-
roml.nml.nml.Cell method), 89

get_ordered_segments_in_groups() (neu-
roml.nml.nml.Cell2CaPools method), 99

get_post_cell_id() (neuroml.nml.nml.Connection
method), 155

get_post_cell_id() (neu-
roml.nml.nml.ConnectionWD method), 159

get_post_cell_id() (neu-
roml.nml.nml.ContinuousConnection method),
165

get_post_cell_id() (neu-
roml.nml.nml.ContinuousConnectionInstance
method), 169

get_post_cell_id() (neu-
roml.nml.nml.ContinuousConnectionInstanceW
method), 173

get_post_cell_id() (neu-
roml.nml.nml.ElectricalConnection method),
201

get_post_cell_id() (neu-
roml.nml.nml.ElectricalConnectionInstance
method), 204

get_post_cell_id() (neu-
roml.nml.nml.ElectricalConnectionInstanceW
method), 208

get_post_fraction_along() (neu-
roml.nml.nml.Connection method), 155

get_post_fraction_along() (neu-
roml.nml.nml.ConnectionWD method), 159

get_post_fraction_along() (neu-
roml.nml.nml.ContinuousConnection method),
165

get_post_fraction_along() (neu-
roml.nml.nml.ContinuousConnectionInstance
method), 169

get_post_fraction_along() (neu-
roml.nml.nml.ContinuousConnectionInstanceW
method), 173

get_post_fraction_along() (neu-
roml.nml.nml.ElectricalConnection method),
201

get_post_fraction_along() (neu-
roml.nml.nml.ElectricalConnectionInstance
method), 204

get_post_fraction_along() (neu-
roml.nml.nml.ElectricalConnectionInstanceW

626 Index

libNeuroML Documentation

method), 208
get_post_info() (neuroml.nml.nml.Connection

method), 155
get_post_info() (neuroml.nml.nml.ConnectionWD

method), 159
get_post_info() (neu-

roml.nml.nml.ContinuousConnection method),
165

get_post_info() (neu-
roml.nml.nml.ContinuousConnectionInstance
method), 169

get_post_info() (neu-
roml.nml.nml.ContinuousConnectionInstanceW
method), 173

get_post_info() (neu-
roml.nml.nml.ElectricalConnection method),
201

get_post_info() (neu-
roml.nml.nml.ElectricalConnectionInstance
method), 204

get_post_info() (neu-
roml.nml.nml.ElectricalConnectionInstanceW
method), 208

get_post_segment_id() (neu-
roml.nml.nml.Connection method), 155

get_post_segment_id() (neu-
roml.nml.nml.ConnectionWD method), 159

get_post_segment_id() (neu-
roml.nml.nml.ContinuousConnection method),
165

get_post_segment_id() (neu-
roml.nml.nml.ContinuousConnectionInstance
method), 169

get_post_segment_id() (neu-
roml.nml.nml.ContinuousConnectionInstanceW
method), 173

get_post_segment_id() (neu-
roml.nml.nml.ElectricalConnection method),
201

get_post_segment_id() (neu-
roml.nml.nml.ElectricalConnectionInstance
method), 204

get_post_segment_id() (neu-
roml.nml.nml.ElectricalConnectionInstanceW
method), 208

get_pre_cell_id() (neuroml.nml.nml.Connection
method), 155

get_pre_cell_id() (neuroml.nml.nml.ConnectionWD
method), 159

get_pre_cell_id() (neu-
roml.nml.nml.ContinuousConnection method),
165

get_pre_cell_id() (neu-
roml.nml.nml.ContinuousConnectionInstance

method), 169
get_pre_cell_id() (neu-

roml.nml.nml.ContinuousConnectionInstanceW
method), 173

get_pre_cell_id() (neu-
roml.nml.nml.ElectricalConnection method),
201

get_pre_cell_id() (neu-
roml.nml.nml.ElectricalConnectionInstance
method), 205

get_pre_cell_id() (neu-
roml.nml.nml.ElectricalConnectionInstanceW
method), 208

get_pre_fraction_along() (neu-
roml.nml.nml.Connection method), 155

get_pre_fraction_along() (neu-
roml.nml.nml.ConnectionWD method), 159

get_pre_fraction_along() (neu-
roml.nml.nml.ContinuousConnection method),
166

get_pre_fraction_along() (neu-
roml.nml.nml.ContinuousConnectionInstance
method), 169

get_pre_fraction_along() (neu-
roml.nml.nml.ContinuousConnectionInstanceW
method), 173

get_pre_fraction_along() (neu-
roml.nml.nml.ElectricalConnection method),
201

get_pre_fraction_along() (neu-
roml.nml.nml.ElectricalConnectionInstance
method), 205

get_pre_fraction_along() (neu-
roml.nml.nml.ElectricalConnectionInstanceW
method), 208

get_pre_info() (neuroml.nml.nml.Connection
method), 155

get_pre_info() (neuroml.nml.nml.ConnectionWD
method), 159

get_pre_info() (neu-
roml.nml.nml.ContinuousConnection method),
166

get_pre_info() (neu-
roml.nml.nml.ContinuousConnectionInstance
method), 170

get_pre_info() (neu-
roml.nml.nml.ContinuousConnectionInstanceW
method), 173

get_pre_info() (neu-
roml.nml.nml.ElectricalConnection method),
201

get_pre_info() (neu-
roml.nml.nml.ElectricalConnectionInstance
method), 205

Index 627

libNeuroML Documentation

get_pre_info() (neu-
roml.nml.nml.ElectricalConnectionInstanceW
method), 209

get_pre_segment_id() (neuroml.nml.nml.Connection
method), 156

get_pre_segment_id() (neu-
roml.nml.nml.ConnectionWD method), 159

get_pre_segment_id() (neu-
roml.nml.nml.ContinuousConnection method),
166

get_pre_segment_id() (neu-
roml.nml.nml.ContinuousConnectionInstance
method), 170

get_pre_segment_id() (neu-
roml.nml.nml.ContinuousConnectionInstanceW
method), 173

get_pre_segment_id() (neu-
roml.nml.nml.ElectricalConnection method),
201

get_pre_segment_id() (neu-
roml.nml.nml.ElectricalConnectionInstance
method), 205

get_pre_segment_id() (neu-
roml.nml.nml.ElectricalConnectionInstanceW
method), 209

get_segment() (neuroml.nml.nml.Cell method), 89
get_segment() (neuroml.nml.nml.Cell2CaPools

method), 100
get_segment_adjacency_list() (neu-

roml.nml.nml.Cell method), 89
get_segment_adjacency_list() (neu-

roml.nml.nml.Cell2CaPools method), 100
get_segment_group() (neuroml.nml.nml.Cell method),

89
get_segment_group() (neu-

roml.nml.nml.Cell2CaPools method), 100
get_segment_groups_by_substring() (neu-

roml.nml.nml.Cell method), 90
get_segment_groups_by_substring() (neu-

roml.nml.nml.Cell2CaPools method), 100
get_segment_id() (neuroml.nml.nml.ExplicitInput

method), 230
get_segment_id() (neuroml.nml.nml.Input method),

341
get_segment_id() (neuroml.nml.nml.InputW method),

346
get_segment_ids_vs_segments() (neu-

roml.nml.nml.Cell method), 90
get_segment_ids_vs_segments() (neu-

roml.nml.nml.Cell2CaPools method), 101
get_segment_length() (neuroml.nml.nml.Cell

method), 90
get_segment_length() (neu-

roml.nml.nml.Cell2CaPools method), 101

get_segment_surface_area() (neuroml.nml.nml.Cell
method), 90

get_segment_surface_area() (neu-
roml.nml.nml.Cell2CaPools method), 101

get_segment_volume() (neuroml.nml.nml.Cell
method), 90

get_segment_volume() (neu-
roml.nml.nml.Cell2CaPools method), 101

get_segments_by_substring() (neu-
roml.nml.nml.Cell method), 90

get_segments_by_substring() (neu-
roml.nml.nml.Cell2CaPools method), 101

get_size() (neuroml.nml.nml.Population method), 439
get_summary() (in module neuroml.utils), 585
get_target_cell_id() (neu-

roml.nml.nml.ExplicitInput method), 230
get_target_cell_id() (neuroml.nml.nml.Input

method), 341
get_target_cell_id() (neuroml.nml.nml.InputW

method), 347
get_target_population() (neu-

roml.nml.nml.ExplicitInput method), 230
get_weight() (neuroml.nml.nml.ContinuousConnectionInstanceW

method), 174
get_weight() (neuroml.nml.nml.ElectricalConnectionInstanceW

method), 209
get_weight() (neuroml.nml.nml.InputW method), 347
GradedSynapse (class in neuroml.nml.nml), 283
GridLayout (class in neuroml.nml.nml), 286

H
has_segment_fraction_info() (in module neu-

roml.utils), 585
HH_cond_exp (class in neuroml.nml.nml), 297
HHRate (class in neuroml.nml.nml), 289
HHTime (class in neuroml.nml.nml), 291
HHVariable (class in neuroml.nml.nml), 294

I
IafCell (class in neuroml.nml.nml), 313
IafRefCell (class in neuroml.nml.nml), 316
IafTauCell (class in neuroml.nml.nml), 320
IafTauRefCell (class in neuroml.nml.nml), 323
IF_cond_alpha (class in neuroml.nml.nml), 300
IF_cond_exp (class in neuroml.nml.nml), 303
IF_curr_alpha (class in neuroml.nml.nml), 307
IF_curr_exp (class in neuroml.nml.nml), 310
Include (class in neuroml.nml.nml), 326
IncludeType (class in neuroml.nml.nml), 328
info() (neuroml.nml.generatedssupersuper.GeneratedsSuperSuper

method), 7
info() (neuroml.nml.nml.AdExIaFCell method), 10
info() (neuroml.nml.nml.AlphaCondSynapse method),

13

628 Index

libNeuroML Documentation

info() (neuroml.nml.nml.AlphaCurrentSynapse
method), 19

info() (neuroml.nml.nml.AlphaCurrSynapse method),
16

info() (neuroml.nml.nml.AlphaSynapse method), 22
info() (neuroml.nml.nml.Annotation method), 25
info() (neuroml.nml.nml.Base method), 27
info() (neuroml.nml.nml.BaseCell method), 30
info() (neuroml.nml.nml.BaseCellMembPotCap

method), 33
info() (neuroml.nml.nml.BaseConductanceBasedSynapse

method), 36
info() (neuroml.nml.nml.BaseConductanceBasedSynapseTwo

method), 39
info() (neuroml.nml.nml.BaseConnection method), 42
info() (neuroml.nml.nml.BaseConnectionNewFormat

method), 45
info() (neuroml.nml.nml.BaseConnectionOldFormat

method), 48
info() (neuroml.nml.nml.BaseCurrentBasedSynapse

method), 50
info() (neuroml.nml.nml.BaseNonNegativeIntegerId

method), 53
info() (neuroml.nml.nml.BaseProjection method), 56
info() (neuroml.nml.nml.basePyNNCell method), 574
info() (neuroml.nml.nml.basePyNNIaFCell method),

577
info() (neuroml.nml.nml.basePyNNIaFCondCell

method), 581
info() (neuroml.nml.nml.BasePynnSynapse method), 59
info() (neuroml.nml.nml.BaseSynapse method), 62
info() (neuroml.nml.nml.BaseVoltageDepSynapse

method), 65
info() (neuroml.nml.nml.BaseWithoutId method), 67
info() (neuroml.nml.nml.BiophysicalProperties

method), 70
info() (neuroml.nml.nml.BiophysicalProperties2CaPools

method), 73
info() (neuroml.nml.nml.BlockingPlasticSynapse

method), 79
info() (neuroml.nml.nml.BlockMechanism method), 76
info() (neuroml.nml.nml.Case method), 82
info() (neuroml.nml.nml.Cell method), 91
info() (neuroml.nml.nml.Cell2CaPools method), 101
info() (neuroml.nml.nml.CellSet method), 106
info() (neuroml.nml.nml.ChannelDensity method), 109
info() (neuroml.nml.nml.ChannelDensityGHK method),

111
info() (neuroml.nml.nml.ChannelDensityGHK2

method), 114
info() (neuroml.nml.nml.ChannelDensityNernst

method), 117
info() (neuroml.nml.nml.ChannelDensityNernstCa2

method), 120

info() (neuroml.nml.nml.ChannelDensityNonUniform
method), 123

info() (neuroml.nml.nml.ChannelDensityNonUniformGHK
method), 126

info() (neuroml.nml.nml.ChannelDensityNonUniformNernst
method), 129

info() (neuroml.nml.nml.ChannelDensityVShift
method), 132

info() (neuroml.nml.nml.ChannelPopulation method),
135

info() (neuroml.nml.nml.ClosedState method), 138
info() (neuroml.nml.nml.ComponentType method), 141
info() (neuroml.nml.nml.CompoundInput method), 143
info() (neuroml.nml.nml.CompoundInputDL method),

146
info() (neuroml.nml.nml.ConcentrationModel_D

method), 149
info() (neuroml.nml.nml.ConditionalDerivedVariable

method), 152
info() (neuroml.nml.nml.Connection method), 156
info() (neuroml.nml.nml.ConnectionWD method), 160
info() (neuroml.nml.nml.Constant method), 162
info() (neuroml.nml.nml.ContinuousConnection

method), 166
info() (neuroml.nml.nml.ContinuousConnectionInstance

method), 170
info() (neuroml.nml.nml.ContinuousConnectionInstanceW

method), 174
info() (neuroml.nml.nml.ContinuousProjection

method), 177
info() (neuroml.nml.nml.DecayingPoolConcentrationModel

method), 180
info() (neuroml.nml.nml.DerivedVariable method), 182
info() (neuroml.nml.nml.DistalDetails method), 185
info() (neuroml.nml.nml.DoubleSynapse method), 188
info() (neuroml.nml.nml.Dynamics method), 191
info() (neuroml.nml.nml.EIF_cond_alpha_isfa_ista

method), 194
info() (neuroml.nml.nml.EIF_cond_exp_isfa_ista

method), 198
info() (neuroml.nml.nml.ElectricalConnection method),

201
info() (neuroml.nml.nml.ElectricalConnectionInstance

method), 205
info() (neuroml.nml.nml.ElectricalConnectionInstanceW

method), 209
info() (neuroml.nml.nml.ElectricalProjection method),

212
info() (neuroml.nml.nml.ExpCondSynapse method),

215
info() (neuroml.nml.nml.ExpCurrSynapse method), 218
info() (neuroml.nml.nml.ExplicitInput method), 230
info() (neuroml.nml.nml.ExpOneSynapse method), 221
info() (neuroml.nml.nml.Exposure method), 233

Index 629

libNeuroML Documentation

info() (neuroml.nml.nml.ExpThreeSynapse method),
224

info() (neuroml.nml.nml.ExpTwoSynapse method), 227
info() (neuroml.nml.nml.ExtracellularProperties

method), 236
info() (neuroml.nml.nml.ExtracellularPropertiesLocal

method), 238
info() (neuroml.nml.nml.FitzHughNagumo1969Cell

method), 241
info() (neuroml.nml.nml.FitzHughNagumoCell

method), 244
info() (neuroml.nml.nml.FixedFactorConcentrationModel

method), 247
info() (neuroml.nml.nml.ForwardTransition method),

250
info() (neuroml.nml.nml.GapJunction method), 253
info() (neuroml.nml.nml.GateFractional method), 256
info() (neuroml.nml.nml.GateFractionalSubgate

method), 259
info() (neuroml.nml.nml.GateHHInstantaneous

method), 261
info() (neuroml.nml.nml.GateHHRates method), 264
info() (neuroml.nml.nml.GateHHRatesInf method), 267
info() (neuroml.nml.nml.GateHHRatesTau method),

270
info() (neuroml.nml.nml.GateHHRatesTauInf method),

273
info() (neuroml.nml.nml.GateHHTauInf method), 275
info() (neuroml.nml.nml.GateHHUndetermined

method), 278
info() (neuroml.nml.nml.GateKS method), 281
info() (neuroml.nml.nml.GradedSynapse method), 284
info() (neuroml.nml.nml.GridLayout method), 287
info() (neuroml.nml.nml.HH_cond_exp method), 298
info() (neuroml.nml.nml.HHRate method), 290
info() (neuroml.nml.nml.HHTime method), 292
info() (neuroml.nml.nml.HHVariable method), 295
info() (neuroml.nml.nml.IafCell method), 315
info() (neuroml.nml.nml.IafRefCell method), 318
info() (neuroml.nml.nml.IafTauCell method), 321
info() (neuroml.nml.nml.IafTauRefCell method), 324
info() (neuroml.nml.nml.IF_cond_alpha method), 302
info() (neuroml.nml.nml.IF_cond_exp method), 305
info() (neuroml.nml.nml.IF_curr_alpha method), 309
info() (neuroml.nml.nml.IF_curr_exp method), 312
info() (neuroml.nml.nml.Include method), 327
info() (neuroml.nml.nml.IncludeType method), 329
info() (neuroml.nml.nml.InhomogeneousParameter

method), 332
info() (neuroml.nml.nml.InhomogeneousValue method),

335
info() (neuroml.nml.nml.InitMembPotential method),

338
info() (neuroml.nml.nml.Input method), 341

info() (neuroml.nml.nml.InputList method), 344
info() (neuroml.nml.nml.InputW method), 347
info() (neuroml.nml.nml.Instance method), 349
info() (neuroml.nml.nml.InstanceRequirement method),

352
info() (neuroml.nml.nml.IntracellularProperties

method), 355
info() (neuroml.nml.nml.IntracellularProperties2CaPools

method), 358
info() (neuroml.nml.nml.IonChannel method), 361
info() (neuroml.nml.nml.IonChannelHH method), 364
info() (neuroml.nml.nml.IonChannelKS method), 367
info() (neuroml.nml.nml.IonChannelScalable method),

370
info() (neuroml.nml.nml.IonChannelVShift method),

373
info() (neuroml.nml.nml.Izhikevich2007Cell method),

376
info() (neuroml.nml.nml.IzhikevichCell method), 379
info() (neuroml.nml.nml.Layout method), 385
info() (neuroml.nml.nml.LEMS_Property method), 382
info() (neuroml.nml.nml.LinearGradedSynapse

method), 388
info() (neuroml.nml.nml.Location method), 390
info() (neuroml.nml.nml.Member method), 393
info() (neuroml.nml.nml.MembraneProperties method),

396
info() (neuroml.nml.nml.MembraneProperties2CaPools

method), 399
info() (neuroml.nml.nml.Morphology method), 402
info() (neuroml.nml.nml.NamedDimensionalType

method), 405
info() (neuroml.nml.nml.NamedDimensionalVariable

method), 408
info() (neuroml.nml.nml.Network method), 411
info() (neuroml.nml.nml.NeuroMLDocument method),

415
info() (neuroml.nml.nml.OpenState method), 418
info() (neuroml.nml.nml.Parameter method), 420
info() (neuroml.nml.nml.Path method), 423
info() (neuroml.nml.nml.PinskyRinzelCA3Cell

method), 427
info() (neuroml.nml.nml.PlasticityMechanism method),

430
info() (neuroml.nml.nml.Point3DWithDiam method),

433
info() (neuroml.nml.nml.PoissonFiringSynapse

method), 436
info() (neuroml.nml.nml.Population method), 439
info() (neuroml.nml.nml.Projection method), 442
info() (neuroml.nml.nml.Property method), 445
info() (neuroml.nml.nml.ProximalDetails method), 448
info() (neuroml.nml.nml.PulseGenerator method), 450
info() (neuroml.nml.nml.PulseGeneratorDL method),

630 Index

libNeuroML Documentation

453
info() (neuroml.nml.nml.Q10ConductanceScaling

method), 456
info() (neuroml.nml.nml.Q10Settings method), 459
info() (neuroml.nml.nml.RampGenerator method), 462
info() (neuroml.nml.nml.RampGeneratorDL method),

465
info() (neuroml.nml.nml.RandomLayout method), 468
info() (neuroml.nml.nml.ReactionScheme method), 471
info() (neuroml.nml.nml.Region method), 473
info() (neuroml.nml.nml.Requirement method), 476
info() (neuroml.nml.nml.Resistivity method), 479
info() (neuroml.nml.nml.ReverseTransition method),

482
info() (neuroml.nml.nml.Segment method), 485
info() (neuroml.nml.nml.SegmentEndPoint method),

488
info() (neuroml.nml.nml.SegmentGroup method), 491
info() (neuroml.nml.nml.SegmentParent method), 494
info() (neuroml.nml.nml.SilentSynapse method), 496
info() (neuroml.nml.nml.SineGenerator method), 500
info() (neuroml.nml.nml.SineGeneratorDL method),

503
info() (neuroml.nml.nml.Space method), 505
info() (neuroml.nml.nml.SpaceStructure method), 508
info() (neuroml.nml.nml.Species method), 511
info() (neuroml.nml.nml.SpecificCapacitance method),

514
info() (neuroml.nml.nml.Spike method), 517
info() (neuroml.nml.nml.SpikeArray method), 519
info() (neuroml.nml.nml.SpikeGenerator method), 522
info() (neuroml.nml.nml.SpikeGeneratorPoisson

method), 525
info() (neuroml.nml.nml.SpikeGeneratorRandom

method), 528
info() (neuroml.nml.nml.SpikeGeneratorRefPoisson

method), 531
info() (neuroml.nml.nml.SpikeSourcePoisson method),

534
info() (neuroml.nml.nml.SpikeThresh method), 537
info() (neuroml.nml.nml.Standalone method), 540
info() (neuroml.nml.nml.StateVariable method), 542
info() (neuroml.nml.nml.SubTree method), 545
info() (neuroml.nml.nml.SynapticConnection method),

548
info() (neuroml.nml.nml.TauInfTransition method), 551
info() (neuroml.nml.nml.TimeDerivative method), 553
info() (neuroml.nml.nml.TimedSynapticInput method),

556
info() (neuroml.nml.nml.TransientPoissonFiringSynapse

method), 559
info() (neuroml.nml.nml.UnstructuredLayout method),

562

info() (neuroml.nml.nml.VariableParameter method),
565

info() (neuroml.nml.nml.VoltageClamp method), 568
info() (neuroml.nml.nml.VoltageClampTriple method),

571
InhomogeneousParameter (class in neuroml.nml.nml),

331
InhomogeneousValue (class in neuroml.nml.nml), 334
InitMembPotential (class in neuroml.nml.nml), 337
Input (class in neuroml.nml.nml), 339
InputList (class in neuroml.nml.nml), 342
InputW (class in neuroml.nml.nml), 345
Instance (class in neuroml.nml.nml), 348
InstanceRequirement (class in neuroml.nml.nml), 351
IntracellularProperties (class in neu-

roml.nml.nml), 354
IntracellularProperties2CaPools (class in neu-

roml.nml.nml), 357
IonChannel (class in neuroml.nml.nml), 360
IonChannelHH (class in neuroml.nml.nml), 363
IonChannelKS (class in neuroml.nml.nml), 366
IonChannelScalable (class in neuroml.nml.nml), 369
IonChannelVShift (class in neuroml.nml.nml), 372
is_valid_neuroml2() (in module neuroml.utils), 585
Izhikevich2007Cell (class in neuroml.nml.nml), 375
IzhikevichCell (class in neuroml.nml.nml), 378

L
Layout (class in neuroml.nml.nml), 384
LEMS_Property (class in neuroml.nml.nml), 381
length (neuroml.nml.nml.Segment property), 485
LinearGradedSynapse (class in neuroml.nml.nml), 386
load() (neuroml.loaders.ArrayMorphLoader class

method), 582
load() (neuroml.loaders.NeuroMLHdf5Loader class

method), 582
load() (neuroml.loaders.NeuroMLLoader class

method), 582
load_swc_single() (neuroml.loaders.SWCLoader

class method), 582
Location (class in neuroml.nml.nml), 389

M
main() (in module neuroml.utils), 585
Member (class in neuroml.nml.nml), 392
MembraneProperties (class in neuroml.nml.nml), 395
MembraneProperties2CaPools (class in neu-

roml.nml.nml), 398
module

neuroml.loaders, 582
neuroml.utils, 584
neuroml.writers, 583

Morphology (class in neuroml.nml.nml), 401

Index 631

libNeuroML Documentation

N
NamedDimensionalType (class in neuroml.nml.nml),

404
NamedDimensionalVariable (class in neu-

roml.nml.nml), 406
Network (class in neuroml.nml.nml), 409
neuro_lex_ids (neuroml.nml.nml.Cell attribute), 91
neuro_lex_ids (neuroml.nml.nml.Cell2CaPools at-

tribute), 102
neuroml.loaders

module, 582
neuroml.utils

module, 584
neuroml.writers

module, 583
NeuroMLDocument (class in neuroml.nml.nml), 412
NeuroMLHdf5Loader (class in neuroml.loaders), 582
NeuroMLHdf5Writer (class in neuroml.writers), 583
NeuroMLLoader (class in neuroml.loaders), 582
NeuroMLWriter (class in neuroml.writers), 584
num_segments (neuroml.nml.nml.Morphology prop-

erty), 403

O
OpenState (class in neuroml.nml.nml), 417
optimise_segment_group() (neuroml.nml.nml.Cell

method), 91
optimise_segment_group() (neu-

roml.nml.nml.Cell2CaPools method), 102
optimise_segment_groups() (neuroml.nml.nml.Cell

method), 91
optimise_segment_groups() (neu-

roml.nml.nml.Cell2CaPools method), 102

P
Parameter (class in neuroml.nml.nml), 419
parentinfo() (neuroml.nml.generatedssupersuper.GeneratedsSuperSuper

method), 7
parentinfo() (neuroml.nml.nml.AdExIaFCell method),

11
parentinfo() (neuroml.nml.nml.AlphaCondSynapse

method), 14
parentinfo() (neuroml.nml.nml.AlphaCurrentSynapse

method), 20
parentinfo() (neuroml.nml.nml.AlphaCurrSynapse

method), 17
parentinfo() (neuroml.nml.nml.AlphaSynapse

method), 23
parentinfo() (neuroml.nml.nml.Annotation method),

25
parentinfo() (neuroml.nml.nml.Base method), 28
parentinfo() (neuroml.nml.nml.BaseCell method), 31
parentinfo() (neuroml.nml.nml.BaseCellMembPotCap

method), 34

parentinfo() (neuroml.nml.nml.BaseConductanceBasedSynapse
method), 37

parentinfo() (neuroml.nml.nml.BaseConductanceBasedSynapseTwo
method), 40

parentinfo() (neuroml.nml.nml.BaseConnection
method), 42

parentinfo() (neuroml.nml.nml.BaseConnectionNewFormat
method), 45

parentinfo() (neuroml.nml.nml.BaseConnectionOldFormat
method), 48

parentinfo() (neuroml.nml.nml.BaseCurrentBasedSynapse
method), 51

parentinfo() (neuroml.nml.nml.BaseNonNegativeIntegerId
method), 54

parentinfo() (neuroml.nml.nml.BaseProjection
method), 56

parentinfo() (neuroml.nml.nml.basePyNNCell
method), 574

parentinfo() (neuroml.nml.nml.basePyNNIaFCell
method), 578

parentinfo() (neuroml.nml.nml.basePyNNIaFCondCell
method), 581

parentinfo() (neuroml.nml.nml.BasePynnSynapse
method), 59

parentinfo() (neuroml.nml.nml.BaseSynapse method),
62

parentinfo() (neuroml.nml.nml.BaseVoltageDepSynapse
method), 65

parentinfo() (neuroml.nml.nml.BaseWithoutId
method), 68

parentinfo() (neuroml.nml.nml.BiophysicalProperties
method), 71

parentinfo() (neuroml.nml.nml.BiophysicalProperties2CaPools
method), 74

parentinfo() (neuroml.nml.nml.BlockingPlasticSynapse
method), 79

parentinfo() (neuroml.nml.nml.BlockMechanism
method), 76

parentinfo() (neuroml.nml.nml.Case method), 82
parentinfo() (neuroml.nml.nml.Cell method), 91
parentinfo() (neuroml.nml.nml.Cell2CaPools

method), 102
parentinfo() (neuroml.nml.nml.CellSet method), 106
parentinfo() (neuroml.nml.nml.ChannelDensity

method), 109
parentinfo() (neuroml.nml.nml.ChannelDensityGHK

method), 112
parentinfo() (neuroml.nml.nml.ChannelDensityGHK2

method), 115
parentinfo() (neuroml.nml.nml.ChannelDensityNernst

method), 118
parentinfo() (neuroml.nml.nml.ChannelDensityNernstCa2

method), 121
parentinfo() (neuroml.nml.nml.ChannelDensityNonUniform

632 Index

libNeuroML Documentation

method), 124
parentinfo() (neuroml.nml.nml.ChannelDensityNonUniformGHK

method), 126
parentinfo() (neuroml.nml.nml.ChannelDensityNonUniformNernst

method), 129
parentinfo() (neuroml.nml.nml.ChannelDensityVShift

method), 133
parentinfo() (neuroml.nml.nml.ChannelPopulation

method), 136
parentinfo() (neuroml.nml.nml.ClosedState method),

138
parentinfo() (neuroml.nml.nml.ComponentType

method), 141
parentinfo() (neuroml.nml.nml.CompoundInput

method), 144
parentinfo() (neuroml.nml.nml.CompoundInputDL

method), 147
parentinfo() (neuroml.nml.nml.ConcentrationModel_D

method), 150
parentinfo() (neuroml.nml.nml.ConditionalDerivedVariable

method), 152
parentinfo() (neuroml.nml.nml.Connection method),

156
parentinfo() (neuroml.nml.nml.ConnectionWD

method), 160
parentinfo() (neuroml.nml.nml.Constant method), 163
parentinfo() (neuroml.nml.nml.ContinuousConnection

method), 166
parentinfo() (neuroml.nml.nml.ContinuousConnectionInstance

method), 170
parentinfo() (neuroml.nml.nml.ContinuousConnectionInstanceW

method), 174
parentinfo() (neuroml.nml.nml.ContinuousProjection

method), 177
parentinfo() (neuroml.nml.nml.DecayingPoolConcentrationModel

method), 180
parentinfo() (neuroml.nml.nml.DerivedVariable

method), 183
parentinfo() (neuroml.nml.nml.DistalDetails method),

186
parentinfo() (neuroml.nml.nml.DoubleSynapse

method), 188
parentinfo() (neuroml.nml.nml.Dynamics method),

191
parentinfo() (neuroml.nml.nml.EIF_cond_alpha_isfa_ista

method), 195
parentinfo() (neuroml.nml.nml.EIF_cond_exp_isfa_ista

method), 198
parentinfo() (neuroml.nml.nml.ElectricalConnection

method), 202
parentinfo() (neuroml.nml.nml.ElectricalConnectionInstance

method), 206
parentinfo() (neuroml.nml.nml.ElectricalConnectionInstanceW

method), 209

parentinfo() (neuroml.nml.nml.ElectricalProjection
method), 213

parentinfo() (neuroml.nml.nml.ExpCondSynapse
method), 215

parentinfo() (neuroml.nml.nml.ExpCurrSynapse
method), 218

parentinfo() (neuroml.nml.nml.ExplicitInput method),
231

parentinfo() (neuroml.nml.nml.ExpOneSynapse
method), 221

parentinfo() (neuroml.nml.nml.Exposure method),
233

parentinfo() (neuroml.nml.nml.ExpThreeSynapse
method), 225

parentinfo() (neuroml.nml.nml.ExpTwoSynapse
method), 228

parentinfo() (neuroml.nml.nml.ExtracellularProperties
method), 236

parentinfo() (neuroml.nml.nml.ExtracellularPropertiesLocal
method), 239

parentinfo() (neuroml.nml.nml.FitzHughNagumo1969Cell
method), 242

parentinfo() (neuroml.nml.nml.FitzHughNagumoCell
method), 245

parentinfo() (neuroml.nml.nml.FixedFactorConcentrationModel
method), 248

parentinfo() (neuroml.nml.nml.ForwardTransition
method), 251

parentinfo() (neuroml.nml.nml.GapJunction method),
254

parentinfo() (neuroml.nml.nml.GateFractional
method), 256

parentinfo() (neuroml.nml.nml.GateFractionalSubgate
method), 259

parentinfo() (neuroml.nml.nml.GateHHInstantaneous
method), 262

parentinfo() (neuroml.nml.nml.GateHHRates
method), 265

parentinfo() (neuroml.nml.nml.GateHHRatesInf
method), 268

parentinfo() (neuroml.nml.nml.GateHHRatesTau
method), 270

parentinfo() (neuroml.nml.nml.GateHHRatesTauInf
method), 273

parentinfo() (neuroml.nml.nml.GateHHTauInf
method), 276

parentinfo() (neuroml.nml.nml.GateHHUndetermined
method), 279

parentinfo() (neuroml.nml.nml.GateKS method), 282
parentinfo() (neuroml.nml.nml.GradedSynapse

method), 285
parentinfo() (neuroml.nml.nml.GridLayout method),

288
parentinfo() (neuroml.nml.nml.HH_cond_exp

Index 633

libNeuroML Documentation

method), 299
parentinfo() (neuroml.nml.nml.HHRate method), 290
parentinfo() (neuroml.nml.nml.HHTime method), 293
parentinfo() (neuroml.nml.nml.HHVariable method),

296
parentinfo() (neuroml.nml.nml.IafCell method), 315
parentinfo() (neuroml.nml.nml.IafRefCell method),

319
parentinfo() (neuroml.nml.nml.IafTauCell method),

322
parentinfo() (neuroml.nml.nml.IafTauRefCell

method), 325
parentinfo() (neuroml.nml.nml.IF_cond_alpha

method), 302
parentinfo() (neuroml.nml.nml.IF_cond_exp method),

306
parentinfo() (neuroml.nml.nml.IF_curr_alpha

method), 309
parentinfo() (neuroml.nml.nml.IF_curr_exp method),

312
parentinfo() (neuroml.nml.nml.Include method), 327
parentinfo() (neuroml.nml.nml.IncludeType method),

330
parentinfo() (neuroml.nml.nml.InhomogeneousParameter

method), 333
parentinfo() (neuroml.nml.nml.InhomogeneousValue

method), 336
parentinfo() (neuroml.nml.nml.InitMembPotential

method), 338
parentinfo() (neuroml.nml.nml.Input method), 341
parentinfo() (neuroml.nml.nml.InputList method), 344
parentinfo() (neuroml.nml.nml.InputW method), 347
parentinfo() (neuroml.nml.nml.Instance method), 350
parentinfo() (neuroml.nml.nml.InstanceRequirement

method), 353
parentinfo() (neuroml.nml.nml.IntracellularProperties

method), 355
parentinfo() (neuroml.nml.nml.IntracellularProperties2CaPools

method), 358
parentinfo() (neuroml.nml.nml.IonChannel method),

362
parentinfo() (neuroml.nml.nml.IonChannelHH

method), 365
parentinfo() (neuroml.nml.nml.IonChannelKS

method), 368
parentinfo() (neuroml.nml.nml.IonChannelScalable

method), 370
parentinfo() (neuroml.nml.nml.IonChannelVShift

method), 374
parentinfo() (neuroml.nml.nml.Izhikevich2007Cell

method), 377
parentinfo() (neuroml.nml.nml.IzhikevichCell

method), 380
parentinfo() (neuroml.nml.nml.Layout method), 385

parentinfo() (neuroml.nml.nml.LEMS_Property
method), 383

parentinfo() (neuroml.nml.nml.LinearGradedSynapse
method), 388

parentinfo() (neuroml.nml.nml.Location method), 391
parentinfo() (neuroml.nml.nml.Member method), 394
parentinfo() (neuroml.nml.nml.MembraneProperties

method), 397
parentinfo() (neuroml.nml.nml.MembraneProperties2CaPools

method), 400
parentinfo() (neuroml.nml.nml.Morphology method),

403
parentinfo() (neuroml.nml.nml.NamedDimensionalType

method), 405
parentinfo() (neuroml.nml.nml.NamedDimensionalVariable

method), 408
parentinfo() (neuroml.nml.nml.Network method), 411
parentinfo() (neuroml.nml.nml.NeuroMLDocument

method), 415
parentinfo() (neuroml.nml.nml.OpenState method),

418
parentinfo() (neuroml.nml.nml.Parameter method),

421
parentinfo() (neuroml.nml.nml.Path method), 424
parentinfo() (neuroml.nml.nml.PinskyRinzelCA3Cell

method), 428
parentinfo() (neuroml.nml.nml.PlasticityMechanism

method), 430
parentinfo() (neuroml.nml.nml.Point3DWithDiam

method), 433
parentinfo() (neuroml.nml.nml.PoissonFiringSynapse

method), 436
parentinfo() (neuroml.nml.nml.Population method),

440
parentinfo() (neuroml.nml.nml.Projection method),

442
parentinfo() (neuroml.nml.nml.Property method), 445
parentinfo() (neuroml.nml.nml.ProximalDetails

method), 448
parentinfo() (neuroml.nml.nml.PulseGenerator

method), 451
parentinfo() (neuroml.nml.nml.PulseGeneratorDL

method), 454
parentinfo() (neuroml.nml.nml.Q10ConductanceScaling

method), 457
parentinfo() (neuroml.nml.nml.Q10Settings method),

460
parentinfo() (neuroml.nml.nml.RampGenerator

method), 463
parentinfo() (neuroml.nml.nml.RampGeneratorDL

method), 466
parentinfo() (neuroml.nml.nml.RandomLayout

method), 468
parentinfo() (neuroml.nml.nml.ReactionScheme

634 Index

libNeuroML Documentation

method), 471
parentinfo() (neuroml.nml.nml.Region method), 474
parentinfo() (neuroml.nml.nml.Requirement method),

477
parentinfo() (neuroml.nml.nml.Resistivity method),

479
parentinfo() (neuroml.nml.nml.ReverseTransition

method), 482
parentinfo() (neuroml.nml.nml.Segment method), 485
parentinfo() (neuroml.nml.nml.SegmentEndPoint

method), 488
parentinfo() (neuroml.nml.nml.SegmentGroup

method), 492
parentinfo() (neuroml.nml.nml.SegmentParent

method), 494
parentinfo() (neuroml.nml.nml.SilentSynapse

method), 497
parentinfo() (neuroml.nml.nml.SineGenerator

method), 500
parentinfo() (neuroml.nml.nml.SineGeneratorDL

method), 503
parentinfo() (neuroml.nml.nml.Space method), 506
parentinfo() (neuroml.nml.nml.SpaceStructure

method), 509
parentinfo() (neuroml.nml.nml.Species method), 512
parentinfo() (neuroml.nml.nml.SpecificCapacitance

method), 514
parentinfo() (neuroml.nml.nml.Spike method), 517
parentinfo() (neuroml.nml.nml.SpikeArray method),

520
parentinfo() (neuroml.nml.nml.SpikeGenerator

method), 523
parentinfo() (neuroml.nml.nml.SpikeGeneratorPoisson

method), 526
parentinfo() (neuroml.nml.nml.SpikeGeneratorRandom

method), 528
parentinfo() (neuroml.nml.nml.SpikeGeneratorRefPoisson

method), 531
parentinfo() (neuroml.nml.nml.SpikeSourcePoisson

method), 535
parentinfo() (neuroml.nml.nml.SpikeThresh method),

537
parentinfo() (neuroml.nml.nml.Standalone method),

540
parentinfo() (neuroml.nml.nml.StateVariable method),

543
parentinfo() (neuroml.nml.nml.SubTree method), 546
parentinfo() (neuroml.nml.nml.SynapticConnection

method), 548
parentinfo() (neuroml.nml.nml.TauInfTransition

method), 551
parentinfo() (neuroml.nml.nml.TimeDerivative

method), 554
parentinfo() (neuroml.nml.nml.TimedSynapticInput

method), 557
parentinfo() (neuroml.nml.nml.TransientPoissonFiringSynapse

method), 560
parentinfo() (neuroml.nml.nml.UnstructuredLayout

method), 562
parentinfo() (neuroml.nml.nml.VariableParameter

method), 565
parentinfo() (neuroml.nml.nml.VoltageClamp

method), 568
parentinfo() (neuroml.nml.nml.VoltageClampTriple

method), 571
Path (class in neuroml.nml.nml), 422
PinskyRinzelCA3Cell (class in neuroml.nml.nml), 425
PlasticityMechanism (class in neuroml.nml.nml), 429
Point3DWithDiam (class in neuroml.nml.nml), 431
PoissonFiringSynapse (class in neuroml.nml.nml),

435
Population (class in neuroml.nml.nml), 438
print_() (in module neuroml.loaders), 582
print_messages() (neu-

roml.nml.generatedscollector.GdsCollector
method), 8

print_summary() (in module neuroml.utils), 585
Projection (class in neuroml.nml.nml), 441
Property (class in neuroml.nml.nml), 444
ProximalDetails (class in neuroml.nml.nml), 446
PulseGenerator (class in neuroml.nml.nml), 449
PulseGeneratorDL (class in neuroml.nml.nml), 452

Q
Q10ConductanceScaling (class in neuroml.nml.nml),

455
Q10Settings (class in neuroml.nml.nml), 458

R
RampGenerator (class in neuroml.nml.nml), 461
RampGeneratorDL (class in neuroml.nml.nml), 464
RandomLayout (class in neuroml.nml.nml), 467
ReactionScheme (class in neuroml.nml.nml), 470
read_neuroml2_file() (in module neuroml.loaders),

583
read_neuroml2_string() (in module neu-

roml.loaders), 583
Region (class in neuroml.nml.nml), 472
reorder_segment_groups() (neuroml.nml.nml.Cell

method), 92
reorder_segment_groups() (neu-

roml.nml.nml.Cell2CaPools method), 103
Requirement (class in neuroml.nml.nml), 475
Resistivity (class in neuroml.nml.nml), 478
ReverseTransition (class in neuroml.nml.nml), 481

S
Segment (class in neuroml.nml.nml), 483

Index 635

libNeuroML Documentation

SegmentEndPoint (class in neuroml.nml.nml), 487
SegmentGroup (class in neuroml.nml.nml), 490
SegmentParent (class in neuroml.nml.nml), 493
set_init_memb_potential() (neuroml.nml.nml.Cell

method), 92
set_init_memb_potential() (neu-

roml.nml.nml.Cell2CaPools method), 103
set_resistivity() (neuroml.nml.nml.Cell method),

92
set_resistivity() (neuroml.nml.nml.Cell2CaPools

method), 103
set_specific_capacitance() (neuroml.nml.nml.Cell

method), 92
set_specific_capacitance() (neu-

roml.nml.nml.Cell2CaPools method), 103
set_spike_thresh() (neuroml.nml.nml.Cell method),

92
set_spike_thresh() (neuroml.nml.nml.Cell2CaPools

method), 103
setup_nml_cell() (neuroml.nml.nml.Cell method), 93
setup_nml_cell() (neuroml.nml.nml.Cell2CaPools

method), 103
SilentSynapse (class in neuroml.nml.nml), 495
SineGenerator (class in neuroml.nml.nml), 498
SineGeneratorDL (class in neuroml.nml.nml), 501
Space (class in neuroml.nml.nml), 504
SpaceStructure (class in neuroml.nml.nml), 507
Species (class in neuroml.nml.nml), 510
SpecificCapacitance (class in neuroml.nml.nml), 513
Spike (class in neuroml.nml.nml), 515
SpikeArray (class in neuroml.nml.nml), 518
SpikeGenerator (class in neuroml.nml.nml), 521
SpikeGeneratorPoisson (class in neuroml.nml.nml),

524
SpikeGeneratorRandom (class in neuroml.nml.nml),

527
SpikeGeneratorRefPoisson (class in neu-

roml.nml.nml), 530
SpikeSourcePoisson (class in neuroml.nml.nml), 533
SpikeThresh (class in neuroml.nml.nml), 536
Standalone (class in neuroml.nml.nml), 538
StateVariable (class in neuroml.nml.nml), 541
SubTree (class in neuroml.nml.nml), 544
summary() (neuroml.nml.nml.Cell method), 93
summary() (neuroml.nml.nml.Cell2CaPools method),

104
summary() (neuroml.nml.nml.NeuroMLDocument

method), 416
surface_area (neuroml.nml.nml.Segment property),

486
SWCLoader (class in neuroml.loaders), 582
SynapticConnection (class in neuroml.nml.nml), 547

T
TauInfTransition (class in neuroml.nml.nml), 549
TimeDerivative (class in neuroml.nml.nml), 552
TimedSynapticInput (class in neuroml.nml.nml), 555
TransientPoissonFiringSynapse (class in neu-

roml.nml.nml), 558

U
UnstructuredLayout (class in neuroml.nml.nml), 561

V
validate() (neuroml.nml.generatedssupersuper.GeneratedsSuperSuper

method), 8
validate() (neuroml.nml.nml.AdExIaFCell method),

11
validate() (neuroml.nml.nml.AlphaCondSynapse

method), 14
validate() (neuroml.nml.nml.AlphaCurrentSynapse

method), 20
validate() (neuroml.nml.nml.AlphaCurrSynapse

method), 17
validate() (neuroml.nml.nml.AlphaSynapse method),

23
validate() (neuroml.nml.nml.Annotation method), 26
validate() (neuroml.nml.nml.Base method), 28
validate() (neuroml.nml.nml.BaseCell method), 31
validate() (neuroml.nml.nml.BaseCellMembPotCap

method), 34
validate() (neuroml.nml.nml.BaseConductanceBasedSynapse

method), 37
validate() (neuroml.nml.nml.BaseConductanceBasedSynapseTwo

method), 40
validate() (neuroml.nml.nml.BaseConnection

method), 43
validate() (neuroml.nml.nml.BaseConnectionNewFormat

method), 46
validate() (neuroml.nml.nml.BaseConnectionOldFormat

method), 49
validate() (neuroml.nml.nml.BaseCurrentBasedSynapse

method), 51
validate() (neuroml.nml.nml.BaseNonNegativeIntegerId

method), 54
validate() (neuroml.nml.nml.BaseProjection method),

57
validate() (neuroml.nml.nml.basePyNNCell method),

575
validate() (neuroml.nml.nml.basePyNNIaFCell

method), 578
validate() (neuroml.nml.nml.basePyNNIaFCondCell

method), 582
validate() (neuroml.nml.nml.BasePynnSynapse

method), 60
validate() (neuroml.nml.nml.BaseSynapse method), 63

636 Index

libNeuroML Documentation

validate() (neuroml.nml.nml.BaseVoltageDepSynapse
method), 66

validate() (neuroml.nml.nml.BaseWithoutId method),
68

validate() (neuroml.nml.nml.BiophysicalProperties
method), 71

validate() (neuroml.nml.nml.BiophysicalProperties2CaPools
method), 74

validate() (neuroml.nml.nml.BlockingPlasticSynapse
method), 80

validate() (neuroml.nml.nml.BlockMechanism
method), 77

validate() (neuroml.nml.nml.Case method), 83
validate() (neuroml.nml.nml.Cell method), 93
validate() (neuroml.nml.nml.Cell2CaPools method),

104
validate() (neuroml.nml.nml.CellSet method), 107
validate() (neuroml.nml.nml.ChannelDensity method),

110
validate() (neuroml.nml.nml.ChannelDensityGHK

method), 113
validate() (neuroml.nml.nml.ChannelDensityGHK2

method), 115
validate() (neuroml.nml.nml.ChannelDensityNernst

method), 118
validate() (neuroml.nml.nml.ChannelDensityNernstCa2

method), 121
validate() (neuroml.nml.nml.ChannelDensityNonUniform

method), 124
validate() (neuroml.nml.nml.ChannelDensityNonUniformGHK

method), 127
validate() (neuroml.nml.nml.ChannelDensityNonUniformNernst

method), 130
validate() (neuroml.nml.nml.ChannelDensityVShift

method), 133
validate() (neuroml.nml.nml.ChannelPopulation

method), 136
validate() (neuroml.nml.nml.ClosedState method), 139
validate() (neuroml.nml.nml.ComponentType

method), 142
validate() (neuroml.nml.nml.CompoundInput

method), 144
validate() (neuroml.nml.nml.CompoundInputDL

method), 147
validate() (neuroml.nml.nml.ConcentrationModel_D

method), 150
validate() (neuroml.nml.nml.ConditionalDerivedVariable

method), 153
validate() (neuroml.nml.nml.Connection method), 157
validate() (neuroml.nml.nml.ConnectionWD method),

161
validate() (neuroml.nml.nml.Constant method), 163
validate() (neuroml.nml.nml.ContinuousConnection

method), 167

validate() (neuroml.nml.nml.ContinuousConnectionInstance
method), 171

validate() (neuroml.nml.nml.ContinuousConnectionInstanceW
method), 175

validate() (neuroml.nml.nml.ContinuousProjection
method), 178

validate() (neuroml.nml.nml.DecayingPoolConcentrationModel
method), 181

validate() (neuroml.nml.nml.DerivedVariable
method), 183

validate() (neuroml.nml.nml.DistalDetails method),
186

validate() (neuroml.nml.nml.DoubleSynapse method),
189

validate() (neuroml.nml.nml.Dynamics method), 192
validate() (neuroml.nml.nml.EIF_cond_alpha_isfa_ista

method), 195
validate() (neuroml.nml.nml.EIF_cond_exp_isfa_ista

method), 199
validate() (neuroml.nml.nml.ElectricalConnection

method), 202
validate() (neuroml.nml.nml.ElectricalConnectionInstance

method), 206
validate() (neuroml.nml.nml.ElectricalConnectionInstanceW

method), 210
validate() (neuroml.nml.nml.ElectricalProjection

method), 213
validate() (neuroml.nml.nml.ExpCondSynapse

method), 216
validate() (neuroml.nml.nml.ExpCurrSynapse

method), 219
validate() (neuroml.nml.nml.ExplicitInput method),

231
validate() (neuroml.nml.nml.ExpOneSynapse

method), 222
validate() (neuroml.nml.nml.Exposure method), 234
validate() (neuroml.nml.nml.ExpThreeSynapse

method), 225
validate() (neuroml.nml.nml.ExpTwoSynapse method),

228
validate() (neuroml.nml.nml.ExtracellularProperties

method), 237
validate() (neuroml.nml.nml.ExtracellularPropertiesLocal

method), 239
validate() (neuroml.nml.nml.FitzHughNagumo1969Cell

method), 243
validate() (neuroml.nml.nml.FitzHughNagumoCell

method), 245
validate() (neuroml.nml.nml.FixedFactorConcentrationModel

method), 248
validate() (neuroml.nml.nml.ForwardTransition

method), 251
validate() (neuroml.nml.nml.GapJunction method),

254

Index 637

libNeuroML Documentation

validate() (neuroml.nml.nml.GateFractional method),
257

validate() (neuroml.nml.nml.GateFractionalSubgate
method), 260

validate() (neuroml.nml.nml.GateHHInstantaneous
method), 262

validate() (neuroml.nml.nml.GateHHRates method),
265

validate() (neuroml.nml.nml.GateHHRatesInf
method), 268

validate() (neuroml.nml.nml.GateHHRatesTau
method), 271

validate() (neuroml.nml.nml.GateHHRatesTauInf
method), 274

validate() (neuroml.nml.nml.GateHHTauInf method),
277

validate() (neuroml.nml.nml.GateHHUndetermined
method), 279

validate() (neuroml.nml.nml.GateKS method), 282
validate() (neuroml.nml.nml.GradedSynapse method),

285
validate() (neuroml.nml.nml.GridLayout method), 288
validate() (neuroml.nml.nml.HH_cond_exp method),

300
validate() (neuroml.nml.nml.HHRate method), 291
validate() (neuroml.nml.nml.HHTime method), 293
validate() (neuroml.nml.nml.HHVariable method),

296
validate() (neuroml.nml.nml.IafCell method), 316
validate() (neuroml.nml.nml.IafRefCell method), 319
validate() (neuroml.nml.nml.IafTauCell method), 322
validate() (neuroml.nml.nml.IafTauRefCell method),

325
validate() (neuroml.nml.nml.IF_cond_alpha method),

303
validate() (neuroml.nml.nml.IF_cond_exp method),

306
validate() (neuroml.nml.nml.IF_curr_alpha method),

310
validate() (neuroml.nml.nml.IF_curr_exp method),

313
validate() (neuroml.nml.nml.Include method), 328
validate() (neuroml.nml.nml.IncludeType method),

331
validate() (neuroml.nml.nml.InhomogeneousParameter

method), 333
validate() (neuroml.nml.nml.InhomogeneousValue

method), 336
validate() (neuroml.nml.nml.InitMembPotential

method), 339
validate() (neuroml.nml.nml.Input method), 342
validate() (neuroml.nml.nml.InputList method), 345
validate() (neuroml.nml.nml.InputW method), 348
validate() (neuroml.nml.nml.Instance method), 351

validate() (neuroml.nml.nml.InstanceRequirement
method), 353

validate() (neuroml.nml.nml.IntracellularProperties
method), 356

validate() (neuroml.nml.nml.IntracellularProperties2CaPools
method), 359

validate() (neuroml.nml.nml.IonChannel method), 362
validate() (neuroml.nml.nml.IonChannelHH method),

365
validate() (neuroml.nml.nml.IonChannelKS method),

368
validate() (neuroml.nml.nml.IonChannelScalable

method), 371
validate() (neuroml.nml.nml.IonChannelVShift

method), 374
validate() (neuroml.nml.nml.Izhikevich2007Cell

method), 377
validate() (neuroml.nml.nml.IzhikevichCell method),

380
validate() (neuroml.nml.nml.Layout method), 386
validate() (neuroml.nml.nml.LEMS_Property

method), 383
validate() (neuroml.nml.nml.LinearGradedSynapse

method), 389
validate() (neuroml.nml.nml.Location method), 392
validate() (neuroml.nml.nml.Member method), 394
validate() (neuroml.nml.nml.MembraneProperties

method), 397
validate() (neuroml.nml.nml.MembraneProperties2CaPools

method), 400
validate() (neuroml.nml.nml.Morphology method),

403
validate() (neuroml.nml.nml.NamedDimensionalType

method), 406
validate() (neuroml.nml.nml.NamedDimensionalVariable

method), 409
validate() (neuroml.nml.nml.Network method), 412
validate() (neuroml.nml.nml.NeuroMLDocument

method), 416
validate() (neuroml.nml.nml.OpenState method), 419
validate() (neuroml.nml.nml.Parameter method), 422
validate() (neuroml.nml.nml.Path method), 424
validate() (neuroml.nml.nml.PinskyRinzelCA3Cell

method), 428
validate() (neuroml.nml.nml.PlasticityMechanism

method), 431
validate() (neuroml.nml.nml.Point3DWithDiam

method), 434
validate() (neuroml.nml.nml.PoissonFiringSynapse

method), 437
validate() (neuroml.nml.nml.Population method), 440
validate() (neuroml.nml.nml.Projection method), 443
validate() (neuroml.nml.nml.Property method), 446
validate() (neuroml.nml.nml.ProximalDetails

638 Index

libNeuroML Documentation

method), 449
validate() (neuroml.nml.nml.PulseGenerator method),

452
validate() (neuroml.nml.nml.PulseGeneratorDL

method), 455
validate() (neuroml.nml.nml.Q10ConductanceScaling

method), 457
validate() (neuroml.nml.nml.Q10Settings method),

460
validate() (neuroml.nml.nml.RampGenerator

method), 463
validate() (neuroml.nml.nml.RampGeneratorDL

method), 466
validate() (neuroml.nml.nml.RandomLayout method),

469
validate() (neuroml.nml.nml.ReactionScheme

method), 472
validate() (neuroml.nml.nml.Region method), 474
validate() (neuroml.nml.nml.Requirement method),

477
validate() (neuroml.nml.nml.Resistivity method), 480
validate() (neuroml.nml.nml.ReverseTransition

method), 483
validate() (neuroml.nml.nml.Segment method), 486
validate() (neuroml.nml.nml.SegmentEndPoint

method), 489
validate() (neuroml.nml.nml.SegmentGroup method),

492
validate() (neuroml.nml.nml.SegmentParent method),

495
validate() (neuroml.nml.nml.SilentSynapse method),

498
validate() (neuroml.nml.nml.SineGenerator method),

501
validate() (neuroml.nml.nml.SineGeneratorDL

method), 504
validate() (neuroml.nml.nml.Space method), 506
validate() (neuroml.nml.nml.SpaceStructure method),

509
validate() (neuroml.nml.nml.Species method), 512
validate() (neuroml.nml.nml.SpecificCapacitance

method), 515
validate() (neuroml.nml.nml.Spike method), 518
validate() (neuroml.nml.nml.SpikeArray method), 520
validate() (neuroml.nml.nml.SpikeGenerator method),

523
validate() (neuroml.nml.nml.SpikeGeneratorPoisson

method), 526
validate() (neuroml.nml.nml.SpikeGeneratorRandom

method), 529
validate() (neuroml.nml.nml.SpikeGeneratorRefPoisson

method), 532
validate() (neuroml.nml.nml.SpikeSourcePoisson

method), 535

validate() (neuroml.nml.nml.SpikeThresh method),
538

validate() (neuroml.nml.nml.Standalone method), 541
validate() (neuroml.nml.nml.StateVariable method),

543
validate() (neuroml.nml.nml.SubTree method), 546
validate() (neuroml.nml.nml.SynapticConnection

method), 549
validate() (neuroml.nml.nml.TauInfTransition

method), 552
validate() (neuroml.nml.nml.TimeDerivative method),

554
validate() (neuroml.nml.nml.TimedSynapticInput

method), 557
validate() (neuroml.nml.nml.TransientPoissonFiringSynapse

method), 560
validate() (neuroml.nml.nml.UnstructuredLayout

method), 563
validate() (neuroml.nml.nml.VariableParameter

method), 566
validate() (neuroml.nml.nml.VoltageClamp method),

569
validate() (neuroml.nml.nml.VoltageClampTriple

method), 572
validate_neuroml2() (in module neuroml.utils), 585
validate_Nml2Quantity_resistivity() (neu-

roml.nml.nml.Resistivity method), 480
validate_Nml2Quantity_resistivity_patterns_

(neuroml.nml.nml.Resistivity attribute), 480
VariableParameter (class in neuroml.nml.nml), 563
VoltageClamp (class in neuroml.nml.nml), 566
VoltageClampTriple (class in neuroml.nml.nml), 569
volume (neuroml.nml.nml.Segment property), 486

W
write() (neuroml.writers.ArrayMorphWriter class

method), 583
write() (neuroml.writers.NeuroMLHdf5Writer class

method), 583
write() (neuroml.writers.NeuroMLWriter class

method), 584
write_messages() (neu-

roml.nml.generatedscollector.GdsCollector
method), 9

Index 639

	User guide
	Introduction
	NeuroML
	Serialisations

	Installation
	Using Pip
	On Fedora based systems
	Install from source
	Run an example
	Unit tests

	API documentation
	nml Module (NeuroML Core classes)
	List of Component classes
	GeneratedsSuperSuper
	GdsCollector
	AdExIaFCell
	AlphaCondSynapse
	AlphaCurrSynapse
	AlphaCurrentSynapse
	AlphaSynapse
	Annotation
	Base
	BaseCell
	BaseCellMembPotCap
	BaseConductanceBasedSynapse
	BaseConductanceBasedSynapseTwo
	BaseConnection
	BaseConnectionNewFormat
	BaseConnectionOldFormat
	BaseCurrentBasedSynapse
	BaseNonNegativeIntegerId
	BaseProjection
	BasePynnSynapse
	BaseSynapse
	BaseVoltageDepSynapse
	BaseWithoutId
	BiophysicalProperties
	BiophysicalProperties2CaPools
	BlockMechanism
	BlockingPlasticSynapse
	Case
	Cell
	Cell2CaPools
	CellSet
	ChannelDensity
	ChannelDensityGHK
	ChannelDensityGHK2
	ChannelDensityNernst
	ChannelDensityNernstCa2
	ChannelDensityNonUniform
	ChannelDensityNonUniformGHK
	ChannelDensityNonUniformNernst
	ChannelDensityVShift
	ChannelPopulation
	ClosedState
	ComponentType
	CompoundInput
	CompoundInputDL
	ConcentrationModel_D
	ConditionalDerivedVariable
	Connection
	ConnectionWD
	Constant
	ContinuousConnection
	ContinuousConnectionInstance
	ContinuousConnectionInstanceW
	ContinuousProjection
	DecayingPoolConcentrationModel
	DerivedVariable
	DistalDetails
	DoubleSynapse
	Dynamics
	EIF_cond_alpha_isfa_ista
	EIF_cond_exp_isfa_ista
	ElectricalConnection
	ElectricalConnectionInstance
	ElectricalConnectionInstanceW
	ElectricalProjection
	ExpCondSynapse
	ExpCurrSynapse
	ExpOneSynapse
	ExpThreeSynapse
	ExpTwoSynapse
	ExplicitInput
	Exposure
	ExtracellularProperties
	ExtracellularPropertiesLocal
	FitzHughNagumo1969Cell
	FitzHughNagumoCell
	FixedFactorConcentrationModel
	ForwardTransition
	GapJunction
	GateFractional
	GateFractionalSubgate
	GateHHInstantaneous
	GateHHRates
	GateHHRatesInf
	GateHHRatesTau
	GateHHRatesTauInf
	GateHHTauInf
	GateHHUndetermined
	GateKS
	GeneratedsSuper
	GradedSynapse
	GridLayout
	HHRate
	HHTime
	HHVariable
	HH_cond_exp
	IF_cond_alpha
	IF_cond_exp
	IF_curr_alpha
	IF_curr_exp
	IafCell
	IafRefCell
	IafTauCell
	IafTauRefCell
	Include
	IncludeType
	InhomogeneousParameter
	InhomogeneousValue
	InitMembPotential
	Input
	InputList
	InputW
	Instance
	InstanceRequirement
	IntracellularProperties
	IntracellularProperties2CaPools
	IonChannel
	IonChannelHH
	IonChannelKS
	IonChannelScalable
	IonChannelVShift
	Izhikevich2007Cell
	IzhikevichCell
	LEMS_Property
	Layout
	LinearGradedSynapse
	Location
	Member
	MembraneProperties
	MembraneProperties2CaPools
	Morphology
	NamedDimensionalType
	NamedDimensionalVariable
	Network
	NeuroMLDocument
	OpenState
	Parameter
	Path
	PinskyRinzelCA3Cell
	PlasticityMechanism
	Point3DWithDiam
	PoissonFiringSynapse
	Population
	Projection
	Property
	ProximalDetails
	PulseGenerator
	PulseGeneratorDL
	Q10ConductanceScaling
	Q10Settings
	RampGenerator
	RampGeneratorDL
	RandomLayout
	ReactionScheme
	Region
	Requirement
	Resistivity
	ReverseTransition
	Segment
	SegmentEndPoint
	SegmentGroup
	SegmentParent
	SilentSynapse
	SineGenerator
	SineGeneratorDL
	Space
	SpaceStructure
	Species
	SpecificCapacitance
	Spike
	SpikeArray
	SpikeGenerator
	SpikeGeneratorPoisson
	SpikeGeneratorRandom
	SpikeGeneratorRefPoisson
	SpikeSourcePoisson
	SpikeThresh
	Standalone
	StateVariable
	SubTree
	SynapticConnection
	TauInfTransition
	TimeDerivative
	TimedSynapticInput
	TransientPoissonFiringSynapse
	UnstructuredLayout
	VariableParameter
	VoltageClamp
	VoltageClampTriple
	basePyNNCell
	basePyNNIaFCell
	basePyNNIaFCondCell

	loaders Module
	writers Module
	utils Module
	arraymorph Module

	Examples
	Creating a NeuroML morphology
	Loading and modifying a file
	Building a network
	Building a 3D network
	Ion channels
	PyNN models
	Synapses
	Working with arraymorphs
	Working with Izhikevich Cells

	References

	Contributing
	How to contribute
	Setting up
	Sync with upstream
	Working locally on a dedicated branch
	Continuous integration
	Release process

	Regenerating documentation
	Implementation of XML bindings for libNeuroML
	Correct naming conventions
	Addition of helper methods
	Generation of bindings

	Multicompartmental Python API Meeting
	Organisation
	Minutes
	Agreeing on terminology (segments, etc.) & scope
	Mike Vella’s current implementation
	Morphforge latest developments
	Neuronvisio latest developments
	Current Python & NeuroML support in MOOSE
	Saving to & loading from XML
	Storing simulation data as HDF5
	General PyNN & NeuroML v2.0 interoperability

	Nodes, Segments and Sections
	Nodes
	Segments
	Sections
	Issues
	Dendrites in space
	Connections mid segment
	What to do?

	Indices and tables
	Bibliography
	Python Module Index
	Index

